Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Photochem Photobiol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126163

RESUMO

Low-level laser therapy (LLLT) has been targeted as a promising tool that can mitigate post-infarction cardiac remodeling. However, there is no gold standard energy delivered to the heart and few studies have evaluated the impact of LLLT on cardiac performance. This study evaluated effects of repeated LLLT applications with different energies delivered to the infarcted myocardium. Echocardiography and hemodynamic measurements were applied to evaluate left ventricular (LV) performance in rats with large infarcts. ELISA, Western blot and biochemical assays were used to assess LV inflammation and oxidative stress. An 830-nm Laser Photon III semiconductor aluminum gallium arsenide diode (DMC, São Carlos, SP, Brazil) was applied transthoracically three times a week for 4 weeks based on the energy (i.e., 10J, 20J, and 40J; respectively). LLLT on 10J and 20J had a similar action in attenuating pulmonary congestion and myocardial fibrosis. Moreover, 10J and 20J attenuated LV end-diastolic pressure and improved +dP/dt and -dP/dt. All LLLT groups had lower levels of inflammatory mediators, but only the 10J group had normalized oxidative stress. All LLLT doses improved superoxide dismutase levels; however, only the 20J group showed a high content of the catalase. There was a lower level of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a in the infarcted myocardium, which it was normalized in the 20J and 40J groups. A higher phospholamban content was found in the 10J group. This study supports the beneficial LLLT role post-infarction. Apparently, the 10J and 20J doses show to be chosen for clinical translation.

2.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790953

RESUMO

(1) Background: We investigated the detrimental and protective effects of short-, medium, and long-term treatment with different doses of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) during the aging process. (2) Methods: Rats were treated for 15, 30, and 60 weeks with 1, 3, 10, and 30 J of PBMT-sMF or a placebo control. In addition, eight young rats were not subjected to any procedure or treatment and were euthanized at six weeks old. Skin, muscle, bone, kidney, liver, and blood samples were analyzed. (3) Results: No differences between the groups in the morphology of the skin, muscle, and bone was observed. Glutamic pyruvic transaminase levels were increased in the placebo group after 30 and 60 weeks. Glutamic oxaloacetic transaminase levels were also increased in the placebo group after 30 weeks. An increase in creatinine in the PBMT-sMF 3, 10, and 30 J groups compared with that in the young control group was observed. No significant difference in urea levels between the groups was noted. Vascular endothelial growth factor increased in the PBMT-sMF 10 and 30 J groups after 15 weeks of treatment and in the PBMT-sMF 3 J after 60 weeks. Finally, vascular endothelial growth factor decreased in the PBMT-sMF 30 J group after 30 weeks of treatment. (4) Conclusions: PBMT-sMF did not have detrimental effects on the skin, muscle, bone, kidney, or liver after short-, medium-, and long-term treatments in aging rats. In addition, PBMT-sMF may have protective effects on the muscle tissue in aging rats after short- and long-term treatment.

3.
Lasers Med Sci ; 38(1): 163, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464155

RESUMO

To review the effects of photobiomodulation therapy (PBMT) on pain intensity and disability in people with plantar fasciitis (PF) when compared with control conditions, other interventions, and adjunct therapies. Systematic searches were conducted in five database randomized controlled trials (RCT). We only included randomized controlled trials (RCTs) in adults with PF that compared PBMT to placebo, as well as RCTs that compared PBMT to other interventions; and as an adjunct to other therapies. The methodological quality and certainty were assessed through PEDro Scale and GRADE approach, respectively. The data of comparison were pooled and a meta-analysis was conducted when possible. Nineteen RCTs involving 1089 participants were included in this review. PBMT alone (MD = - 22.02 [- 35.21 to - 8.83]) or with exercise (MD = - 21.84 [- 26.14 to - 17.54]) improved pain intensity in short-term treatment. PBMT was superior to (extracorporeal shock wave therapy) EWST for relief of pain (MD = - 20.94 [- 32.74 to - 9.13]). In the follow-up, PBMT plus exercise had a superior to exercise therapy alone (MD = - 18.42 [- 26.48 to - 10.36]). PBMT may be superior to (ultrasound therapeutic) UST in medium- and long-term follow-ups for disability, but can be not clinically relevant. There is uncertainty that PBMT is capable of promoting improvement in disability. PBMT when used with adjuvant therapy does not enhance outcomes of interest. PBMT improves pain intensity with or without exercise. PBMT has been shown to be superior to ESWT for pain relief, but not superior to other interventions for pain intensity and disability. The evidence does not support PBMT as an adjunct to other electrotherapeutic modalities.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Fasciíte Plantar , Terapia com Luz de Baixa Intensidade , Adulto , Humanos , Medição da Dor , Fasciíte Plantar/radioterapia , Dor/tratamento farmacológico
4.
J Clin Med ; 12(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769752

RESUMO

This clinical trial aims to provide evidence about the effectiveness of the Pilates method on stress urinary incontinence (SUI), as well as to elucidate the effects of photobiomodulation therapy associated with static magnetic field (PBMT/sMF) alone or associated with the Pilates Method on Pelvic floor muscle (PFM) in women affected by SUI. For that, a three-arm, parallel randomized, double-blinded, placebo-controlled trial was conducted (NCT05096936). We recruited thirty-three women diagnosed with SUI, randomly allocated to three groups: placebo PBMT/sMF plus method Pilates, PBMT/sMF active plus method Pilates and only PBMT/sMF active. The evaluation consisted of anamnesis and physical examination, muscle strength, completion of the ICIQ-SF questionnaire, and urinary loss. The evaluation of muscle strength and filling the ICIQ-SF were performed on the first and last days, while the Pad test was applied in baseline, one month, two months, and three months of intervention. We observed an increase in strength (p < 0.01), tone (p < 0.01), and quality of life (p < 0.01), in addition to a decrease in urinary lost (p < 0.01) for all groups comparing the pre and post-intervention. The PBMT/sMF alone, the Pilates, and the combination of the two therapies proved to be effective in improving the signs and symptoms of women with SUI.

5.
Antioxidants (Basel) ; 11(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36139746

RESUMO

Oxidative stress induced by exercise has been a research field in constant growth, due to its relationship with the processes of fatigue, decreased production of muscle strength, and its ability to cause damage to the cell. In this context, photobiomodulation therapy (PBMT) has emerged as a resource capable of improving performance, while reducing muscle fatigue and muscle damage. To analyze the effects of PBMT about exercise-induced oxidative stress and compare with placebo therapy. DATA SOURCES: Databases such as PubMed, EMBASE, CINAHL, CENTRAL, PeDro, and Virtual Health Library, which include Lilacs, Medline, and SciELO, were searched to find published studies. STUDY SELECTION: There was no year or language restriction; randomized clinical trials with healthy subjects that compared the application (before or after exercise) of PBMT to placebo therapy were included. STUDY DESIGN: Systematic review with meta-analysis. DATA EXTRACTION: Data on the characteristics of the volunteers, study design, intervention parameters, exercise protocol and oxidative stress biomarkers were extracted. The risk of bias and the certainty of the evidence were assessed using the PEDro scale and the GRADE system, respectively. RESULTS: Eight studies (n = 140 participants) were eligible for this review, with moderate to excellent methodological quality. In particular, PBMT was able to reduce damage to lipids post exercise (SMD = -0.72, CI 95% -1.42 to -0.02, I2 = 77%, p = 0.04) and proteins (SMD = -0.41, CI 95% -0.65 to -0.16, I2 = 0%, p = 0.001) until 72 h and 96 h, respectively. In addition, it increased the activity of SOD enzymes (SMD = 0.54, CI 95% 0.07 to 1.02, I2 = 42%, p = 0.02) post exercise, 48 and 96 h after irradiation. However, PBMT did not increase CAT activity (MD = 0.18 CI 95% -0.56 to 0.91, I2 = 79%, p = 0.64) post exercise. We did not find any difference in TAC or GPx biomarkers. CONCLUSION: Low to moderate certainty evidence shows that PBMT is a resource that can reduce oxidative damage and increase enzymatic antioxidant activity post exercise. We found evidence to support that one session of PBMT can modulate the redox metabolism.

6.
Oxid Med Cell Longev ; 2022: 9968428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910832

RESUMO

The ergogenic effects of photobiomodulation therapy combined with a static magnetic field (PBMT-sMF) on exercises with characteristics similar to those of CrossFit® are unknown. This study was aimed at investigating the effects of PBMT-sMF applied at different times on recovery and physical performance in CrossFit® athletes by analyzing functional aspects, muscle damage, inflammatory processes, and oxidative stress. This was a prospectively registered, triple-blinded, placebo-controlled, crossover trial. CrossFit® athletes were recruited and assigned to receive one of the four possible interventions. Each intervention included protocols before and after the exercise (referred to as the workout of the day (WOD)). The four possibilities of intervention were as follows: placebo before and after WOD (placebo), PBMT-sMF before and placebo after WOD (PBMT-sMF before), placebo before and PBMT-sMF after WOD (PBMT-sMF after), and PBMT-sMF before and after WOD (PBMT-sMF before and after). The order of possibilities for the interventions was randomized. The primary outcome was the functional test performance. The secondary outcomes were the subjective perception of exertion, muscle damage, inflammation, and oxidative stress. The outcomes were measured before the WOD; immediately after the intervention; and 1, 24, and 48 hours after the WOD. Statistical analysis was performed using repeated measures ANOVA followed by the Bonferroni post hoc test to examine the differences between the interventions at each time point. Twelve participants were randomized and analyzed for each sequence. PBMT-sMF enhanced the performance on functional tests (calculated as a percentage of change) when applied before or after WOD in the assessment performed immediately post-WOD and at 24 and 48 hours later (p < 0.05) compared to placebo and PBMT-sMF before and after WOD. In terms of the secondary outcomes, PBMT-sMF applied before or after WOD significantly decreased the creatine kinase, catalase, and superoxide dismutase activities and interleukin-6, thiobarbituric acid, and carbonylated protein levels (all p < 0.05) compared to the other possibilities of intervention. In addition, PBMT-sMF applied before and after WOD decreased creatine kinase activity at 24 hours and IL-6 levels at 24 and 48 hours compared to placebo (p < 0.05). None of the participants reported any adverse events. PBMT-sMF enhanced the performance of functional tests, decreased the levels of biochemical markers of muscle damage and inflammation, decreased oxidative stress, and increased antioxidant activity in CrossFit® athletes when applied before or after WOD.


Assuntos
Terapia com Luz de Baixa Intensidade , Campos Magnéticos , Desempenho Físico Funcional , Atletas , Creatina Quinase , Estudos Cross-Over , Humanos , Inflamação , Terapia com Luz de Baixa Intensidade/métodos , Fadiga Muscular , Músculo Esquelético/fisiologia
7.
Life (Basel) ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629324

RESUMO

Photobiomodulation therapy (PBMT) has been used to treat patients with chronic neck and/or shoulder pain. However, it is unknown whether the concurrent use of PBMT and static magnetic field (PBMT-sMF) also has positive effects in these patients. The aim of this study was to investigate the effects of PBMT-sMF versus placebo on pain intensity, range of motion (ROM) and treatment satisfaction in patients with chronic nonspecific neck and/or shoulder pain. A randomized controlled trial, with blinded assessors, therapists and patients was carried out. Seventy-two patients with chronic nonspecific neck and/or shoulder pain were randomized to either active PBMT-sMF (n = 36) or placebo PBMT-sMF (n = 36). Patients were treated twice weekly, over 3 weeks. Primary outcome was pain intensity, measured 15 min after the last treatment session and at 24-, 48-, 72-h, and 7-days after the last treatment. Secondary outcomes were ROM, patient' treatment satisfaction, and adverse effects. PBMT-sMF was able to reduce pain intensity in all time points tested compared to placebo (p < 0.05). There was no difference between groups in the secondary outcomes (p > 0.05). Our results suggest that PBMT-sMF is better than placebo to reduce pain in patients with chronic nonspecific neck and/or shoulder pain at short-term.

8.
Life (Basel) ; 12(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35207474

RESUMO

BACKGROUND: Gait deficit is a major complaint in patients after stroke, restricting certain activities of daily living. Photobiomodulation therapy combined with a static magnetic field (PBMT-SMF) has been studied for several diseases, and the two therapies are beneficia. However, their combination has not yet been evaluated in stroke. Therefore, for PBMT-SMF to be used more often and become an adjunctive tool in the rehabilitation of stroke survivors at physical therapy rehabilitation centers and clinics, some important aspects need to be clarified. PURPOSE: This study aimed to test different doses of PBMT-SMF, to identify the ideal dose to cause immediate effects on the spatiotemporal and kinematic variables of gait in post-stroke patients. METHODS: A randomized, triple-blinded, placebo-controlled crossover pilot study was performed. A total of 10 individuals with hemiparesis within 6 months to 5 years since the occurrence of stroke, aged 45-60 years, were included in the study. Participants were randomly assigned and treated with a single PBMT-SMF dose (sham, 10 J, 30 J, or 50 J) on a single application, with one dose per stage at 7-day intervals between stages. PBMT-SMF was applied with a cluster of 12 diodes (4 of 905 nm laser, 4 of 875 nm LEDs, and 4 of 640 nm LEDs, SMF of 35 mT) at 17 sites on both lower limbs after baseline evaluation: plantar flexors (2), knee extensors (9), and flexors (6). The primary outcome was self-selected walking speed, and the secondary outcomes were kinematic parameters. Gait analysis was performed using SMART-D 140® and SMART-D INTEGRATED WORKSTATION®. The outcomes were measured at the end of each stage after the single application of each PBMT-SMF dose tested. RESULTS: No significant differences (p > 0.05) in spatiotemporal variables were observed between the different doses, compared with the baseline evaluation. However, differences (p < 0.05) were observed in the kinematic variable of the hip in the paretic and non-paretic limbs, specifically in the minimum flexion/extension angulation during the support phase (HMST-MIN) in doses 10 J, 30 J, and 50 J. CONCLUSIONS: A single application of PBMT-SMF at doses of 10 J, 30 J, and 50 J per site of the lower limbs did not demonstrate positive effects on the spatiotemporal variables, but it promoted immediate effects in the kinematic variables of the hip (maximum and minimum flexion/extension angulation during the support phase) in the paretic and non-paretic limbs in post-stroke people.

9.
Braz J Phys Ther ; 26(1): 100388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35151026

RESUMO

BACKGROUND: Previous studies have shown positive results of photobiomodulation (PBM) for improving performance and accelerating post-exercise recovery. However, the effects of PBM in healthy individuals who underwent a neuromuscular adaptation training remain unclear. OBJECTIVE: To investigate the effects of PBM during a training program combining sprints and explosive squats exercises on clinical, functional, and systemic outcomes in trained healthy individuals compared to a placebo intervention and a control. METHODS: We conducted a randomized placebo-controlled trial. Healthy males were randomly assigned to three groups: active PBM (30 J per site), placebo, or control (passive recovery). The participants performed a six-week (12 sessions) of a training program consisting of a combination of sprints and squats with recovery applied between sprints and squats. To prevent the influence of the primary neuromuscular adaptation to exercise on the results, all participants had to participate in a period of six weeks of exercise training program. Functional, clinical, and psychological outcomes and vascular endothelial growth factor (VEGF) were assessed at baseline and after six weeks. Results are expressed as mean difference (MD) and 95% confidence intervals (CI). RESULTS: Thirty-nine healthy male volunteers (aged 18-30 years; body mass index 23.9 ±â€¯3 kg/m²) were recruited. There was no significant time by group interaction, and no significant effect of group, but there was a significant effect of time for maximal voluntary isometric contraction (primary outcome) (MD=22 Nm/kg; 95%CI: 3.9, 40) and for squat jump (MD=1.6 cm; 95CI%: 0.7, 2.5). There was no significant interaction (time*group), time, or group effect for the other outcomes. CONCLUSION: The addition of PBM to a combined training performed for six weeks in previously trained individuals did not result in additional benefits compared to placebo or no additional intervention.


Assuntos
Terapia com Luz de Baixa Intensidade , Exercício Físico , Terapia por Exercício , Humanos , Contração Isométrica , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Fator A de Crescimento do Endotélio Vascular
10.
Lasers Med Sci ; 37(3): 1375-1388, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34669081

RESUMO

The purpose of this study is to compare the effect of photobiomodulation therapy (PBMT) and cryotherapy (CRT) on muscle recovery outcomes. These searches were performed in PubMed, PEDro, CENTRAL, and VHL (which includes the Lilacs, Medline, and SciELO database) from inception to June 2021. We included randomized clinical trials involved healthy human volunteers (> 18 years) underwent an intervention of PBMT and CRT, when used in both isolated form post-exercise. Standardized mean differences (SMD) or mean difference (MD) with 95% confidence interval were calculated and pooled in a meta-analysis for synthesis. The risk of bias and quality of evidence were assessed through Cochrane risk-of-bias tool and GRADE system. Four articles (66 participants) with a high to low risk of bias were included. The certainty of evidence was classified as moderate to very low. PBMT was estimated to improve the muscle strength (SMD = 1.73, CI 95% 1.33 to 2.13, I2 = 27%, p < 0.00001), reduce delayed onset muscle soreness (MD: - 25.69%, CI 95% - 34.42 to - 16.97, I2 = 89%, p < 0.00001), and lower the concentration of biomarkers of muscle damage (SMD = - 1.48, CI 95% - 1.93 to - 1.03, I2 = 76%, p < 0,00,001) when compared with CRT. There was no difference in oxidative stress and inflammatory levels. Based on our findings, the use of PBMT in muscle recovery after high-intensity exercise appears to be beneficial, provides a clinically important effect, and seems to be the best option when compared to CRT.


Assuntos
Crioterapia , Terapia com Luz de Baixa Intensidade , Exercício Físico/fisiologia , Humanos , Força Muscular , Músculos
11.
Biomed Opt Express ; 12(11): 6940-6953, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858690

RESUMO

There is evidence about the effects of photobiomodulation therapy (PBMT) alone and combined with a static magnetic field (PBMT-sMF) on skeletal muscle fatigue, physical performance and post-exercise recovery in different types of exercise protocols and sports activity. However, the effects of PBMT-sMF to improve the subsequent performance after a first set of exercises are unknown. Therefore, the aim of this study was to investigate the effects of PBMT-sMF, applied between two sets of exercises, on the subsequent physical performance. A randomized, crossover, triple-blinded (assessors, therapist, and volunteers), placebo-controlled trial was carried out. Healthy non-athlete male volunteers were randomized and treated with a single application of PBMT-sMF and placebo between two sets of an exercise protocol performed on isokinetic dynamometer. The order of interventions was randomized. The primary outcome was fatigue index and the secondary outcomes were total work, peak work, and blood lactate levels. Twelve volunteers were randomized and analyzed to each sequence. PBMT-sMF decreased the fatigue index compared to the placebo PBMT-sMF at second set of the exercise protocol (MD = -6.08, 95% CI -10.49 to -1.68). In addition, PBMT-sMF decreased the blood lactate levels post-intervention, and after the second set of the exercise protocol compared to placebo (p<0.05). There was no difference between PBMT-sMF and placebo in the remaining outcomes tested. Volunteers did not report adverse events. Our results suggest that PBMT-sMF is able to decrease skeletal muscle fatigue, accelerating post-exercise recovery and, consequently, increasing subsequent physical performance when applied between two sets of exercises.

12.
J Inflamm Res ; 14: 3569-3585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335043

RESUMO

PURPOSE: We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. PATIENTS AND METHODS: We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. RESULTS: Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = -6.80; 95% CI = -18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). CONCLUSION: Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. TRIAL REGISTRATION NUMBER CLINICAL TRIALSGOV: NCT04386694.

13.
Photochem Photobiol Sci ; 20(4): 585-595, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33864617

RESUMO

This study evaluated the effect of photobiomodulation therapy (PBMt) before or after a high-intensity resistance exercise (RE) session on muscle oxidative stress. Female Wistar rats were assigned to one of the following groups: Sham (non-exercised, undergoing placebo-PBMt); NLRE (exercised, undergoing placebo-PBMt); PBMt + RE (pre-exercise PBMt); RE + PBMt (post-exercise PBMt). The RE comprised four climbs bearing the maximum load with a 2 min rest between each climb. An 830-nm aluminum gallium arsenide diode laser (100 mW; 0.028 cm2; 3.57 mW/cm2; 142.8 J/cm2; 4 J; Photon Laser III, DMC, São Paulo, Brazil) was applied 60 s before or after RE in gastrocnemius muscles. Analyses were performed at 24 h after RE: lipoperoxidation using malondialdehyde (MDA) and protein oxidation (OP) on Western blot. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity were spectrophotometrically assessed. Nitric oxide (NO) level was determined by the Griess reaction. The MDA and OP levels were significantly higher in the NLRE group. Increased OP was prevented in all PBMt groups; however, increased MDA was prevented only in the RE + PBMT group. The RE + PBMt group had higher SOD activity compared to all other groups. A higher GPx activity was observed only in the PBMT + RE compared to Sham group, and CAT activity was reduced by RE, without PBMt effect. NO levels were unchanged with RE or PBMt. Therefore, PBMt application after a RE section has a more potent antioxidant effect than previous PBMt. Rats submitted to post-RE PBMt illustrated prevention of increased lipoperoxidation and protein oxidation as well as increased SOD activity. The photobiomodulation can attenuate oxidative stress induced by resistance exercise. A more evident benefit shows to be obtained with the application after exercise, in which it has increased the activity of superoxide dismustase.


Assuntos
Terapia com Luz de Baixa Intensidade , Músculo Esquelético , Estresse Oxidativo , Treinamento Resistido , Animais , Antioxidantes , Feminino , Peroxidação de Lipídeos , Malondialdeído , Oxirredução , Condicionamento Físico Animal , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico
14.
Pain ; 162(6): 1612-1620, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449509

RESUMO

ABSTRACT: Photobiomodulation therapy (PBMT) has been used in several musculoskeletal disorders to reduce pain, inflammation, and promoting tissue regeneration. The current evidence about the effects of PBMT on low back pain (LBP) is still conflicting. We aimed to evaluate the effects of PBMT against placebo on pain intensity and disability in patients with chronic nonspecific LBP. This was a prospectively registered, randomised placebo-controlled trial, with blinded patients, therapists, and assessors. The study was conducted on an outpatient physical therapy clinic in Brazil, between April 2017 and May 2019. A total of 148 patients with chronic nonspecific LBP were randomised to either active PBMT (n = 74) or placebo (n = 74). Patients from both groups received 12 treatment sessions, 3 times a week, for 4 weeks. Patients from both groups also received an educational booklet based on "The Back Book." Clinical outcomes were measured at baseline and at follow-up appointments at 4 weeks, 3, 6, and 12 months after randomisation. The primary outcomes were pain intensity and disability measured at 4 weeks. We estimated the treatment effects using linear mixed models following the principles of intention-to-treat. There was no clinical important between-group differences in terms of pain intensity (mean difference = 0.01 point; 95% confidence interval = -0.94 to 0.96) and disability (mean difference = -0.63 points; 95% confidence interval = -2.23 to 0.97) at 4 weeks. Patients did not report any adverse events. Photobiomodulation therapy was not better than placebo to reduce pain and disability in patients with chronic nonspecific LBP.


Assuntos
Dor Crônica , Dor Lombar , Terapia com Luz de Baixa Intensidade , Brasil , Dor Crônica/terapia , Humanos , Dor Lombar/terapia , Resultado do Tratamento
15.
Lasers Surg Med ; 53(2): 236-244, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32330315

RESUMO

BACKGROUND AND OBJECTIVES: Non-specific low back pain (LBP) is responsible for triggering increased biomarkers levels. In this way, photobiomodulation therapy (PBMT) may be an interesting alternative to treat these patients. One of the possible biological mechanisms of PBMT involved to decrease pain intensity in patients with musculoskeletal disorders is modulation of the inflammatory mediators' levels. The aim of this study was to evaluate the effects of PBMT compared with placebo on inflammatory mediators' levels and pain intensity in patients with chronic non-specific LBP. STUDY DESIGN/MATERIALS AND METHODS: A prospectively registered, randomized triple-blinded (volunteers, therapists, and assessors), placebo-controlled trial was performed. Eighteen patients with chronic non-specific LBP were recruited and treated with a single session of active PBMT or placebo PBMT. The primary outcome of the study was serum prostaglandin E2 levels and the secondary outcomes were tumor necrosis factor-α, interleukin-6 levels, and pain intensity. All outcomes were measured before and after 15 minutes of treatment session. RESULTS: PBMT was able to decrease prostaglandin E2 levels at post-treatment compared with placebo, with a mean difference of -1470 pg/ml, 95% confidence interval -2906 to -33.67 in patients with LBP. There was no difference between groups in the other measured outcomes. Patients did not report any adverse events. CONCLUSION: Our results suggest that PBMT was able to modulate prostaglandin E2 levels, indicating that this may be one of the mechanisms involved in the analgesic effects of PBMT in patients with LBP. Trial registration number (ClinicalTrials.gov): NCT03859505. Lasers Surg. Med. © 2020 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.


Assuntos
Dor Lombar , Terapia com Luz de Baixa Intensidade , Dinoprostona , Humanos , Interleucina-6 , Dor Lombar/terapia , Fator de Necrose Tumoral alfa
16.
Lasers Med Sci ; 36(7): 1427-1435, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33156476

RESUMO

Photobiomodulation therapy (PBMT) has been indicated for enforcement on healing skin wounds. This study evaluated the effects of PBMT on the healing of skin wounds during the proliferation phase in rats with a hypoproteic diet. Rats were randomized to one of the following groups (n = 10 per group): (i) injured normoproteic (25% protein) not subjected to PBMT; (ii) injured normoproteic who received PBMT; (iii) injured hypoproteic (8% protein) not subjected to PBMT; and (iv) injured hypoproteic who received PBMT. Rats were submitted to skin wounds and then treated with PBMT (low-level laser therapy: 660 nm, 50 mW, 1.07 W/cm2, 0.028 cm2, 72 J/cm2, 2 J). Analyses were performed at 7 and 14 days of follow-up: semi-quantitative histopathologic analysis, collagen type I and III expressions, immunohistochemical marking for matrix metalloproteinases-3 (MMP-3) and (matrix metalloproteinases-9) MMP-9, and mechanical resistance test. There were significant differences between the normoproteic groups and their respective treated groups (p < 0.05), as well as to treated and untreated hypoproteic groups in histopathologic analysis semi-quantitatively and immunohistochemistry for MMP-3 and 9, in which PBMT was able to decrease immunostaining. Moreover, there was a decrease in collagen deposition with the statistical difference (p < 0.05) for both collagen types III and I. In conclusion, PBMT application was proved effective in the treatment of cutaneous wounds in rats submitted to a hypoproteic diet. These alterations were more salient in the proliferation stage with the reduction of metalloproteinases providing better mechanical resistance of the injured area in the remodeling phase with an intensification of type I collagen.


Assuntos
Dieta com Restrição de Proteínas , Terapia com Luz de Baixa Intensidade , Cicatrização , Animais , Proliferação de Células , Dieta , Ratos , Ratos Wistar
18.
Lasers Med Sci ; 35(6): 1253-1262, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31782023

RESUMO

Identify the optimal energy delivered with a single application of the combination of photobiomodulation therapy (PBMT) combining different light sources (low-level laser therapy-LLLT and light emitting diode therapy-LEDT) and static magnetic field (sMF) in order to determine the acute effects on functional mobility of stroke survivors. Was conducted a randomized, placebo-controlled, crossover, triple-blind, clinical trial (RCT). Twelve patients were recruited, however ten concluded the study, they were randomly treated with four PBMT/sMF energies (sham-0 J, 10 J, 30 J, and 50 J per site irradiated), with 1-week interval washout between treatments. PBMT/sMF were administered after the pre-intervention (baseline) evaluation and the total energy delivered per site at each treatment was determined based on the results of the randomization procedure. PBMT/sMF were administered in direct contact with the skin and applied with slight pressure to nine sites on the knee extensors, six sites on the knee flexors, and two sites on the plantar flexors' muscles in both lower limbs (bilaterally). The primary outcome measure was the 6-min walk test (6MWT) and the secondary outcome was the Timed Up and Go (TUG) test. Significant improvements were found in the 6MWT test using a total energy of 30 J per site compared with sham (0 J) (p < 0.05) and compared with the baseline evaluation (p < 0.01). And in the TUG test significant improvements were also found using a total energy per site of 30 J per site compared to sham (0 J) and baseline (p < 0.05). PBMT with different light sources (laser and LEDs) and wavelengths in combination with sMF with a total energy per site of 30 J has positive acute effects on functional mobility in stroke survivors.


Assuntos
Terapia com Luz de Baixa Intensidade , Campos Magnéticos , Movimento , Sobreviventes , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Teste de Caminhada
19.
Lasers Med Sci ; 35(2): 439-445, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31325122

RESUMO

The aim of the present study was to evaluate the effect of intraoral photobiomodulation involving super-pulsed laser (905 nm) combined with red (640 nm) and infrared (875 nm) light-emitting diodes on pain, mandibular range of motion, and functioning in women with myogenous temporomandibular disorder. A randomized, sham-controlled, double-blind clinical trial was conducted involving 30 women with myogenous temporomandibular disorder diagnosed using the Research Diagnostic Criteria for Temporomandibular Disorders. The participants were randomly allocated to two groups (active and sham photobiomodulation). The evaluations involved this use of the visual analog scale, digital calipers, and a functional scale. Photobiomodulation was administered intraorally in the region of the pterygoid muscles, bilaterally, in all participants for a total of six sessions. Evaluations were performed on five occasions: prior to the intervention, immediately after the first session, 24 h and 48 h after the first session, and after the six sessions. Significant differences between groups were found regarding pain (p ≤ 0.01) and functioning (p ≤ 0.04). However, no statistically significant difference was found regarding range of mandibular motion. The findings demonstrate that intraoral photobiomodulation involving super-pulsed laser (905 nm) combined with red (640 nm) and infrared (875 nm) light-emitting diodes diminishes pain and improves functioning but does not exert an influence on mandibular range of motion in women with temporomandibular disorder.Trial registration: NCT02839967.


Assuntos
Terapia com Luz de Baixa Intensidade , Dor/radioterapia , Transtornos da Articulação Temporomandibular/fisiopatologia , Adulto , Método Duplo-Cego , Feminino , Humanos , Mandíbula/fisiopatologia , Mandíbula/efeitos da radiação , Dor/fisiopatologia , Medição da Dor , Amplitude de Movimento Articular , Fatores de Tempo , Escala Visual Analógica
20.
BMJ Open ; 9(10): e030194, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31662370

RESUMO

INTRODUCTION: In recent years, it has been demonstrated that photobiomodulation therapy (PBMT) using low-level laser therapy and/or light-emitting diode therapy combined to static magnetic field (sMF) has ergogenic effects, improving muscular performance and accelerating postexercise recovery. However, many aspects related to these effects and its clinical applicability remain unknown. Therefore, the aim of this project is to evaluate the ergogenic effects of PBMT/sMF in detraining after a strength-training protocol. METHODS AND ANALYSIS: The study will be a randomised, triple-blind, placebo-controlled clinical trial. Healthy male volunteers will be randomly distributed into four experimental groups: PBMT/sMF before training sessions + PBMT/sMF during detraining, PBMT/sMF before training sessions + placebo during detraining, placebo before training sessions + PBMT/sMF during detraining and placebo before training sessions + placebo during detraining. Strength-training sessions will be carried out over 12 weeks, and the detraining period will occur during the 4 weeks after. The muscular strength and the structural properties of quadriceps will be analysed. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of Nove de Julho University. The results from this study will be disseminated through scientific publications in international peer-reviewed journals and presented at national and international scientific meetings. TRIAL REGISTRATION NUMBER: NCT03858179.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Magnetoterapia/métodos , Força Muscular , Músculo Quadríceps , Treinamento Resistido/métodos , Adulto , Humanos , Campos Magnéticos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA