Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Braz. j. microbiol ; Braz. j. microbiol;47(2): 314-321, Apr.-June 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-780839

RESUMO

Abstract Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006).


Assuntos
Microbiologia do Solo , Bactérias/isolamento & purificação , Filogenia , Plantas/microbiologia , Solo/química , Bactérias/classificação , Bactérias/genética , Óxido de Alumínio/análise , Mineração
2.
Braz. J. Microbiol. ; 47(2): 314-321, Abr-Jun. 2016. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-23408

RESUMO

Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006).(AU)


Assuntos
Rhizobiaceae/classificação , Rhizobiaceae/crescimento & desenvolvimento , Mineração , Reação em Cadeia da Polimerase
3.
Braz J Microbiol ; 47(2): 314-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26991294

RESUMO

Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006).


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Óxido de Alumínio/análise , Bactérias/classificação , Bactérias/genética , Mineração , Filogenia , Plantas/microbiologia , Solo/química
4.
Microb Ecol ; 68(2): 329-38, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24595907

RESUMO

Pterocarpus officinalis Jacq. is a legume tree native to the Caribbean islands and South America growing as a dominant species in swamp forests. To analyze (i) the genetic diversity and (ii) the symbiotic properties of its associated nitrogen-fixing soil bacteria, root nodules were collected from P. officinalis distributed in 16 forest sites of the Caribbean islands and French Guiana. The sequencing of the 16S-23S ribosomal RNA intergenic spacer region (ITS) showed that all bacteria belonged to the Bradyrhizobium genus. Bacteria isolated from insular zones showed very close sequence homologies with Bradyrhizobium genospecies V belonging to the Bradyrhizobium japonicum super-clade. By contrast, bacteria isolated from continental region displayed a larger genetic diversity and belonged to B. elkanii super-clade. Two strains from Puerto Rico and one from French Guiana were not related to any known sequence and could be defined as a new genospecies. Inoculation experiments did not show any host specificity of the Bradyrhizobium strains tested in terms of infectivity. However, homologous Bradyrhizobium sp. strain-P. officinalis provenance associations were more efficient in terms of nodule production, N acquisition, and growth than heterologous ones. The dominant status of P. officinalis in the islands may explain the lower bacterial diversity compared to that found in the continent where P. officinalis is associated with other leguminous tree species. The specificity in efficiency found between Bradyrhizobium strains and host tree provenances could be due to a coevolution process between both partners and needs to be taken in consideration in the framework of rehabilitation plantation programs.


Assuntos
Bradyrhizobium/classificação , Variação Genética , Filogenia , Pterocarpus/microbiologia , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Florestas , Guiana Francesa , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose , Índias Ocidentais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA