Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
4.
R Soc Open Sci ; 8(3): 201584, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33959328

RESUMO

Soil ecosystem service (SES) approaches evidence the importance of soil for human well-being, contribute to improving dialogue between science and decision-making and encourage the translation of scientific results into public policies. Herein, through systematic review, we assess the state of the art of SES approaches in tropical regions. Through this review, 41 publications were identified; while most of these studies considered SES, a lack of a consistent framework to define SES was apparent. Most studies measured soil natural capital and processes, while only three studies undertook monetary valuation. Although the number of publications increased (from 1 to 41), between 2001 and 2019, the total number of publications for tropical regions is still small. Countries with the largest number of publications were Brazil (n = 8), Colombia (n = 6) and Mexico (n = 4). This observation emphasizes an important knowledge gap pertaining to SES approaches and their link to tropical regions. With global momentum behind SES approaches, there is an opportunity to integrate SES approaches into policy and practice in tropical regions. The use of SES evaluation tools in tropical regions could transform how land use decisions are informed, mitigating soil degradation and protecting the ecosystems that soil underpins.

5.
Nature ; 586(7831): 724-729, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057198

RESUMO

Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity1 and stabilizing the climate of the Earth2. Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO2-30% of the total CO2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental/tendências , Cooperação Internacional , Animais , Biodiversidade , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Recuperação e Remediação Ambiental/economia , Mapeamento Geográfico , Aquecimento Global/economia , Aquecimento Global/prevenção & controle
7.
Sci Rep ; 10(1): 1946, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029788

RESUMO

Brazil is a megadiversity country with more tropical forest than any other, and is a leading agricultural producer. The technical potential to reconcile these roles by concentrating agriculture on existing farmland and sparing land for nature is well-established, but the spatial overlap of this potential with conservation priorities and institutional constraints remains poorly understood. We mapped conservation priorities, food production potential and socio-economic variables likely to influence the success of land sparing. Pasture occupies 70% of agricultural land but contributes ≤11% of the domestic food supply. Increasing yields on pasture would add little to Brazil's food supply but - if combined with concerted conservation and restoration policies - provides the greatest opportunities for reducing land demand. Our study illustrates a method for identifying municipalities where land-sparing policies are most likely to succeed, and those where further effort is needed to overcome constraints such as land tenure insecurity, lack of access to technical advice, labour constraints, and non-compliance with environmental law.

8.
Sci Rep ; 9(1): 11993, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427607

RESUMO

Most deforested lands in Brazil are occupied by low-productivity cattle ranching. Brazil is the second biggest meat producer worldwide and is projected to increase its agricultural output more than any other country. Biochar has been shown to improve soil properties and agricultural productivity when added to degraded soils, but these effects are context-dependent. The impact of biochar, fertilizer and inoculant on the productivity of forage grasses in Brazil (Brachiaria spp. and Panicum spp.) was investigated from environmental and socio-economic perspectives. We showed a 27% average increase in Brachiaria production over two years but no significant effects of amendment on Panicum yield. Biochar addition also increased the contents of macronutrients, soil pH and CEC. Each hectare amended with biochar saved 91 tonnes of CO2eq through land sparing effect, 13 tonnes of CO2eq sequestered in the soil, equating to U$455 in carbon payments. The costs of biochar production for smallholder farmers, mostly because of labour cost, outweighed the potential benefits of its use. Biochar is 617% more expensive than common fertilizers. Biochar could improve productivity of degraded pasturelands in Brazil if investments in efficient biochar production techniques are used and biochar is subsidized by low emission incentive schemes.


Assuntos
Carvão Vegetal , Meio Ambiente , Solo/química , Agricultura , Algoritmos , Biomassa , Brasil , Ciclo do Carbono , Análise Custo-Benefício , Ecossistema , Florestas , Modelos Teóricos
9.
Nat Ecol Evol ; 3(1): 62-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568285

RESUMO

International commitments for ecosystem restoration add up to one-quarter of the world's arable land. Fulfilling them would ease global challenges such as climate change and biodiversity decline but could displace food production and impose financial costs on farmers. Here, we present a restoration prioritization approach capable of revealing these synergies and trade-offs, incorporating ecological and economic efficiencies of scale and modelling specific policy options. Using an actual large-scale restoration target of the Atlantic Forest hotspot, we show that our approach can deliver an eightfold increase in cost-effectiveness for biodiversity conservation compared with a baseline of non-systematic restoration. A compromise solution avoids 26% of the biome's current extinction debt of 2,864 plant and animal species (an increase of 257% compared with the baseline). Moreover, this solution sequesters 1 billion tonnes of CO2-equivalent (a 105% increase) while reducing costs by US$28 billion (a 57% decrease). Seizing similar opportunities elsewhere would offer substantial contributions to some of the greatest challenges for humankind.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Brasil , Sequestro de Carbono , Análise Custo-Benefício
10.
Sci Adv ; 3(11): e1701345, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29134195

RESUMO

Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biomass, and height) tested. Restoration success for biodiversity and vegetation structure was 34 to 56% and 19 to 56% higher in natural regeneration than in active restoration systems, respectively, after controlling for key biotic and abiotic factors (forest cover, precipitation, time elapsed since restoration started, and past disturbance). Biodiversity responses were based primarily on ecological metrics of abundance and species richness (74%), both of which take far less time to achieve restoration success than similarity and composition. This finding challenges the widely held notion that natural forest regeneration has limited conservation value and that active restoration should be the default ecological restoration strategy. The proposition that active restoration achieves greater restoration success than natural regeneration may have arisen because previous comparisons lacked controls for biotic and abiotic factors; we also did not find any difference between active restoration and natural regeneration outcomes for vegetation structure when we did not control for these factors. Future policy priorities should align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective, and compatible with socioeconomic incentives for tropical forest restoration.


Assuntos
Recuperação e Remediação Ambiental , Florestas , Animais , Biodiversidade , Metanálise como Assunto , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA