Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165871, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517733

RESUMO

Nowadays, there is still a scientific knowledge gap regarding occurrence and distribution of organic contaminants in remote areas. In this study, we have monitored for the first time the presence of a wide range of persistent and emerging organic pollutants in the Atacama Desert coastal region (Chile), a key area in the Humboldt Current System. Nonylphenols (NPs), polycyclic aromatic hydrocarbons (PAHs), pesticides, UV filters, synthetic fragrances, and organophosphate flame retardants (OPFRs) were determined in sediments along the >500 km length Atacama coastline. NPs, well-known endocrine disruptors, were the predominant pollutants in the area (up to 333.5 ng g-1 dw). We identified inputs of different classes of contaminants from anthropogenic activities such as mining, agriculture, direct effluent discharges, harbors, energy plants, recreational activities, and tourism occurring along the coastline. Environmental risk assessment through calculation of hazard quotients (HQs) showed a high ecological risk level for NPs in the three provinces of Atacama (HQ >1). In the case of PAHs, (pyrene, benz(a)anthracene, chrysene, acenaphthene, naphthalene and benzo(a)pyrene) HQ >1 was showed in Copiapó province. Furthermore, estradiol equivalent concentrations (EEQ) were determined to estimate estrogenicity of the environmental sediment samples. The maximum EEQ value was for NPs in H1 (Carrizal Bajo wetland), province of Huasco, where the highest concentration of NPs was found. The sampling point H1 is a particular location because it is the exit of a wetland and a tourist point used as a beach. The potential risks of anthropogenic chemical substances impacting remote regions such as the one studied here highlight the need of expand monitoring efforts worldwide for a better assessment of the global pollution status.

2.
Environ Sci Pollut Res Int ; 29(56): 84946-84961, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35789461

RESUMO

This work explores the degradation of xenobiotic compounds in aerobic and anaerobic batch reactors. Different inoculums were spiked with nine emerging contaminants at nominal concentrations ranging between 1 to 2 mg/L (ibuprofen, diclofenac, naproxen, acesulfame, sucralose, aspartame, cyclamate, linear alkylbenzene sulfonates, and secondary alkyl sulfonates). Ethanol was used as co-substrate in the anaerobic reactors. We found that the kinetic decay was faster in the aerobic reactors inoculated with a Spanish (Spn) inoculum compared to a Brazilian (Brz) inoculum, resulting in rection rates for LAS and SAS of 2.67 ± 3.6 h-1 and 5.09 ± 6 h-1 for the Brz reactors, and 1.3 ± 0.1 h-1 and 1.5 ± 0.2 h-1 for the Spn reactors, respectively. There was no evidence of LAS and SAS degradation under anaerobic conditions within 72 days; nonetheless, under aerobic conditions, these surfactants were removed by both the Brz and Spn inoculums (up to 86.2 ± 9.4% and 74.3 ± 0.7%, respectively) within 10 days. The artificial sweeteners were not removed under aerobic conditions, whereas we could observe a steady decrease in the anaerobic reactors containing the Spn inoculum. Ethanol aided in the degradation of surfactants in anaerobic environments. Proteiniphilum, Paraclostridium, Arcobacter, Proteiniclasticum, Acinetobacter, Roseomonas, Aquamicrobium, Moheibacter, Leucobacter, Synergistes, Cyanobacteria, Serratia, and Desulfobulbus were the main microorganisms identified in this study.


Assuntos
Esgotos , Tensoativos , Esgotos/química , Anaerobiose , Biodegradação Ambiental , Tensoativos/metabolismo , Etanol , Reatores Biológicos
3.
Environ Monit Assess ; 193(9): 596, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34426877

RESUMO

Emerging pollutants and priority substances are of growing concern due to their toxicity potential to aquatic organisms and human health. However, few reports on this issue in marine ecosystems in general and, more specifically, on the Colombian Caribbean coast are available. The aim of this study was to detect these compounds in sediments from Cartagena Bay (CB) and in the Grand Marsh of Santa Marta, GMSM (Ramsar site), in order to determine how they related to in vitro cytotoxicity assays on HepG2 cells of sediment extracts. A total of thirty compounds were detected using GC-MS/MS in fifteen stations during both the rainy and the dry seasons. Sediments from CB had a wide range of different toxicants, with polycyclic aromatic hydrocarbons (PAHs) being the most prevalent (12 PAHs, 5.5-881.6 ng/g). Total PCBs ranged from < LOD to 18.6 ng/g, with PCB 138 being the most common detected congener. Residues of p,p'-DDE, Chlorpyrifos and two organophosphate flame retardants, TEHP and ToTP, were found in most sampling locations. The UV filters 4MBC and homosalate were recurrently found in sediments, and the fragrance galaxolide appeared in all cases, with the greatest concentrations found on a touristic beach. In GMSM, with the exception of deltamethrin, all chemicals evaluated had lower average values than in CB. According to sediment quality guidelines, some sites in CB presented values of PAHs higher than the threshold effects level, while in the marsh, none of the stations exceeded it. HepG2 cells exposed to 1% sediment extracts presented reduced cell viability up to 26%. Cytotoxicity displayed a negative correlation with chlorpyrifos concentration. In short, these data suggest the bay and the marsh have specific contamination fingerprints related to anthropogenic interventions. This research highlights the need to further investigate the ecotoxicological implications of detected chemical stressors in these ecosystems.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Baías , Colômbia , Ecossistema , Monitoramento Ambiental , Humanos , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Áreas Alagadas
4.
Environ Sci Technol ; 49(10): 5948-55, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25884477

RESUMO

Pharmaceuticals are active substances found in sewage effluents and can negatively impact aquatic systems even at low concentrations. A fraction of these chemicals can be attached onto suspended solids and end up in sediments. This research shows concentrations of a wide group of pharmaceuticals in sediments from an urban estuarine setting (Jamaica Bay, New York). Highest concentrations (>75 ng g(-1)) were measured in surface sediments from the inner part of the bay, directly affected by sewage discharges and where water circulation is more restricted. Only 16 out of 61 target compounds were detected, and those positively charged (e.g., metoprolol) and/or highly hydrophobic (e.g., tamoxifen) were predominant. Their sediment-pore water partition coefficients were also calculated for the first time and were in a range between 11 and 2041 L/kg depending on the compound. Analysis of dated sediment cores revealed that pharmaceuticals were well preserved along the sedimentary column, a highly reducing environment. There was an increase in the concentration of most target compounds over the last five decades correlated with the increase in their usage, with some exceptions such as sulfamethazine (now used only for veterinary purposes). Thus, overall concentration of pharmaceuticals in sediment cores showed a doubling time of 9.2 years. Vertical distribution profiles for selected compounds also allowed reconstructing the history of contamination at Jamaica Bay by pharmaceuticals. The use of some of these chemicals as sewage molecular markers was also investigated.


Assuntos
Baías/química , Cidades , Estuários , Sedimentos Geológicos/química , Preparações Farmacêuticas/análise , Esgotos/química , Poluentes Químicos da Água/análise , Cidade de Nova Iorque , Porosidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA