Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400615, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259266

RESUMO

Amino acids have a crucial role in the field of asymmetric organocatalysis for the production of chiral compounds with high added value and specific biological activity. In particular, proline offers high activity and stereoselectivity for catalyzing aldol reactions in organic solvents. However, proline-based catalysts often lack water-solubility, accessibility, catalytic performance, or recovery in aqueous media. This work reports the design of proline-functionalized poly(methyl methacrylate) (PMMA) nanoparticles with a magnetic core that offer high availability of chiral units in water and high recyclability. A proline-based copolymerizable surfactant is designed and integrated onto the surface of PMMA nanoparticles through a miniemulsion polymerization process without using additional surfactants. The miniemulsion technique allows the incorporation of magnetite to the system to create a magnetically separable catalyst. The chiral nanocatalyst presents a high diastereoselective catalytic activity for the intermolecular aldol reaction between p-nitrobenzaldehyde and cyclohexanone in water.

2.
Angew Chem Int Ed Engl ; : e202413089, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265063

RESUMO

Polymersomes are synthetic vesicles that mimic the architecture of cellular compartments such as the cell membrane and organelles. These biomimetic compartments facilitate the creation of cell-like chemical systems, including microreactors and synthetic organelles. However, the construction of hierarchical multi-compartment systems remains challenging and typically requires the encapsulation of pre-formed vesicles within a host compartment. Here, we report the formation of multicompartment polymersomes with a vesicle-in-vesicle architecture achieved through self-division induced by short peptides incorporated into the vesicle membrane. A phenylalanine-phenylalanine-methionine (FFM) tripeptide was designed and encapsulated into the polymersome via microfluidics. We demonstrate that vesicle self-division occurs due to peptide incorporation into the membrane in response to pH changes. This self-division creates internal vesicles capable of colocalizing enzymes. The hybrid polymer-peptide system described here provides a straightforward method for developing subcompartmentalized systems, paving the way for engineering microreactors with life-like properties.

3.
Chem Soc Rev ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291461

RESUMO

Nanoparticles (NPs) inevitably interact with proteins upon exposure to biological fluids, leading to the formation of an adsorption layer known as the "protein corona". This corona imparts NPs with a new biological identity, directly influencing their interactions with living systems and dictating their fates in vivo. Thus, gaining a comprehensive understanding of the dynamic interplay between NPs and proteins in biological fluids is crucial for predicting therapeutic effects and advancing the clinical translation of nanomedicines. Numerous methods have been established to decode the protein corona fingerprints. However, these methods primarily rely on prior isolation of NP-protein complex from the surrounding medium by centrifugation, resulting in the loss of outer-layer proteins that directly interact with the biological system and determine the in vivo fate of NPs. We discuss here separation techniques as well as in situ characterization methods tailored for comprehensively unraveling the inherent complexities of NP-protein interactions, highlighting the challenges of in situ protein corona characterization and its significance for nanomedicine development and clinical translation.

4.
Adv Sci (Weinh) ; : e2407117, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206683

RESUMO

Replicating the microstructural basis and the near 100% excitation energy transfer efficiency in naturally occurring light-harvesting complexes (LHCs) remains challenging in synthetic energy-harvesting devices. Biological photosynthesis regulates active ensembles of light-absorbing and funneling chlorophylls in proteins in response to fluctuating sunlight. Here, use of long-range liquid crystal (LC) ordering to tailor chain orientation and packing structure in liquid crystalline conjugated polymer (LCCP) layers for bio-mimicry of certain structural basis and light-harvesting properties of LHCs is reported. It is found that long-range orientational ordering in an LC phase of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) copolymer stabilizes a small fraction of randomly-oriented F8BT nanocrystals dispersed in an amorphous matrix of F8BT chains, resembling a self-doped host-guest system whereby excitation energy funneling and photoluminescence quantum efficiencies are enhanced significantly by triggering 3D donor-to-acceptor Förster resonance energy transfer (FRET) and dominant intrachain emission in the nano-crystal acceptor. Further, photoalignment of nematic F8BT layers is combined with LC orientational ordering to fabricate large-area-extended monodomains exhibiting >60% crystallinity and ≈20 nm-long interchain packing order. Remarkably, these monodomains demonstrate strong linearly polarized emission, whilst also promoting a new band-edge absorption species and an extra emissive interchain excited state as compared to the non-aligned films.

5.
Nanoscale Horiz ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206737

RESUMO

In order to achieve a therapeutic effect, many drugs have to reach specific cellular compartments. Nanoscale drug delivery systems extend the circulation time, reduce adverse effects and thus improve tolerability compared to systemic administration. We have developed two types of albumin-coated nanocarriers equipped with built-in dyes to track their cellular uptake and intracellular enzymatic opening. Using the approved antiprotozoal drug and STAT3 inhibitor Atovaquone (Ato) as prototype for a hydrophobic small molecule, we show that Ato-loaded ovalbumin-coated nanocapsules (Ato-nCap) preferentially enter human myeloid cells. In contrast, Ato nanocrystals coated with human serum albumin (Ato-nCry) distribute their cargo in all different immune cell types, including T and B cells. By measuring the effect of Ato nanocarriers on induced STAT3 phosphorylation in IL-10-primed human dendritic cells and constitutive STAT3 phosphorylation in human melanoma cells, we demonstrate that the intracellular Ato release is particularly effective from Ato nanocrystals and less toxic than equal doses of free drug. These new nanocarriers thus represent effective systems for intracellular drug delivery.

6.
ACS Biomater Sci Eng ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213601

RESUMO

The adsorption of serum proteins on biomaterial surfaces is a critical determinant for the outcome of medical procedures and therapies, which involve inserting materials and devices into the body. In this study, we aimed to understand how surface topography at the nanoscale influences the composition of the protein corona that forms on the (bio)material surface when placed in contact with serum proteins. To achieve that, we developed nanoengineered model surfaces with finely tuned topography of 16, 40, and 70 nm, overcoated with methyl oxazoline to ensure uniform outermost chemistry across all surfaces. Our findings revealed that within the studied height range, surface nanotopography had no major influence on the overall quantity of adsorbed proteins. However, significant alterations were observed in the composition of the adsorbed protein corona. For instance, clusterin adsorption decreased on all the nanotopography-modified surfaces. Conversely, there was a notable increase in the adsorption of ApoB and IgG gamma on the 70 nm nanotopography. In comparison, the adsorption of albumin was greater on surfaces that had a topography scale of 40 nm. Analysis of the gene enrichment data revealed a reduction in protein adsorption across all immune response-related biological pathways on nanotopography-modified surfaces. This reduction became more pronounced for larger surface nanoprotrusions. Macrophages were used as representative immune cells to assess the influence of the protein corona composition on inflammatory outcomes. Gene expression analysis demonstrated reduced inflammatory responses on the nanotopographically modified surface, a trend further corroborated by cytokine analysis. These findings underscore the potential of precisely engineered nanotopography-coated surfaces for augmenting biomaterial functionality.

7.
Commun Biol ; 7(1): 941, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097626

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed bio-nanoparticles secreted by cells and naturally evolved to transport various bioactive molecules between cells and even organisms. These cellular objects are considered one of the most promising bio-nanovehicles for the delivery of native and exogenous molecular cargo. However, many challenges with state-of-the-art EV-based candidates as drug carriers still exist, including issues with scalability, batch-to-batch reproducibility, and cost-sustainability of the final therapeutic formulation. Microalgal extracellular vesicles, which we named nanoalgosomes, are naturally released by various microalgal species. Here, we evaluate the innate biological properties of nanoalgosomes derived from cultures of the marine microalgae Tetraselmis chuii, using an optimized manufacturing protocol. Our investigation of nanoalgosome biocompatibility in preclinical models includes toxicological analyses, using the invertebrate model organism Caenorhabditis elegans, hematological and immunological evaluations ex vivo and in mice. We evaluate nanoalgosome cellular uptake mechanisms in C. elegans at cellular and subcellular levels, and study their biodistribution in mice with accurate space-time resolution. Further examination highlights the antioxidant and anti-inflammatory bioactivities of nanoalgosomes. This holistic approach to nanoalgosome functional characterization demonstrates that they are biocompatible and innate bioactive effectors with unique bone tropism. These findings suggest that nanoalgosomes have significant potential for future therapeutic applications.


Assuntos
Anti-Inflamatórios , Antioxidantes , Vesículas Extracelulares , Microalgas , Vesículas Extracelulares/metabolismo , Animais , Microalgas/metabolismo , Camundongos , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caenorhabditis elegans/metabolismo , Materiais Biocompatíveis/química , Clorófitas/metabolismo , Osso e Ossos/metabolismo , Tropismo
8.
Adv Sci (Weinh) ; 11(34): e2403668, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973298

RESUMO

Nanocapsules enable multicomponent encapsulation of therapeutic cargoes with high encapsulation content and efficiency, which is vital for cancer immunotherapy. In the past, chemical crosslinking is used to synthesize nanocapsules, which can impede the regulatory approval process. Therefore, a new class of protein nanocapsules is developed by eliminating the need for chemical crosslinking by utilizing protein denaturation through a process that is referred to as "baking at the droplet interface". Such protein nanocapsules with antigens incorporated in the shell and a combination of encapsulated drugs showed an enhancement in the immune response of cells.


Assuntos
Nanocápsulas , Nanocápsulas/química , Animais , Camundongos , Desnaturação Proteica , Humanos , Imunoterapia/métodos
9.
J Am Chem Soc ; 146(29): 19886-19895, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38990188

RESUMO

Single-atom catalysts (SACs) open up new possibilities for advanced technologies. However, a major complication in preparing high-density single-atom sites is the aggregation of single atoms into clusters. This complication stems from the delicate balance between the diffusion and stabilization of metal atoms during pyrolysis. Here, we present pressure-controlled metal diffusion as a new concept for fabricating ultra-high-density SACs. Reducing the pressure inhibits aggregation substantially, resulting in almost three times higher single-atom loadings than those obtained at ambient pressure. Molecular dynamics and computational fluid dynamics simulations reveal the role of a metal hopping mechanism, maximizing the metal atom distribution through an increased probability of metal-ligand binding. The investigation of the active site density by electrocatalytic oxygen reduction validates the robustness of our approach. The first realization of Ullmann-type carbon-oxygen couplings catalyzed on single Cu sites demonstrates further options for efficient heterogeneous catalysis.

10.
Nano Lett ; 24(30): 9202-9211, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037031

RESUMO

The formation of a protein corona gives nanomedicines a distinct biological identity, profoundly influencing their fate in the body. Nonspecific nanoparticle-protein interactions are typically highly heterogeneous, which can lead to unique biological behaviors and in vivo fates for individual nanoparticles that remain underexplored. To address this, we have established an in situ approach that allows quantitative examination of nanoparticle-protein adsorption at the individual nanoparticle level. This method integrates dual fluorescence quantification techniques, wherein the nanoparticles are first individually analyzed via nanoflow cytometry to detect fluorescent signals from adsorbed proteins. The obtained fluorescence intensity is then translated into protein quantities through calibration with microplate reader quantification. Consequently, this approach enables analysis of interparticle heterogeneity of nano-protein interactions, as well as in situ monitoring of protein adsorption kinetics and nanoparticle aggregation status in blood serum, preconditioning for a comprehensive understanding of nano-bio interactions, and predicting in vivo fate of nanomedicines.


Assuntos
Proteínas Sanguíneas , Nanopartículas , Adsorção , Nanopartículas/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/análise , Humanos , Coroa de Proteína/química , Fluorescência , Cinética
11.
Adv Mater ; 36(35): e2404054, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925104

RESUMO

Particle size is a critical factor for improving photocatalytic reactivity of conjugated microporous polymers (CMPs) as mass transfer in the porous materials is often the rate-limiting step. However, due to the synthetic challenge of controlling the size of CMPs, the impact of particle size is yet to be investigated. To address this problem, a simple and versatile dispersion polymerization route that can synthesize dispersible CMP nanoparticles with controlled size from 15 to 180 nm is proposed. Leveraging the precise control of the size, it is demonstrated that smaller CMP nanoparticles have dramatically higher photocatalytic reactivity in various organic transformations, achieving more than 1000% enhancement in the reaction rates by decreasing the size from 180 to 15 nm. The size-dependent photocatalytic reactivity is further scrutinized using a kinetic model and transient absorption spectroscopy, revealing that only the initial 5 nm-thick surface layer of CMP nanoparticles is involved in the photocatalytic reactions because of internal mass transfer limitations. This finding substantiates the potential of small CMP nanoparticles to efficiently use photo-generated excitons and improve energy-efficiency of numerous photocatalytic reactions.

12.
Adv Mater ; 36(29): e2401137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742799

RESUMO

In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.

13.
J Am Chem Soc ; 146(17): 11991-11999, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639465

RESUMO

The complex dynamics and transience of assembly pathways in living systems complicate the understanding of these molecular to nanoscale processes. Current technologies are unable to track the molecular events leading to the onset of assembly, where real-time information is imperative to correlate their rich biology. Using a chemically designed pro-assembling molecule, we map its transformation into nanofibers and their fusion with endosomes to form hollow fiber clusters. Tracked by phasor-fluorescence lifetime imaging (phasor-FLIM) in epithelial cells (L929, A549, MDA-MB 231) and correlative light-electron microscopy and tomography (CLEM), spatiotemporal splicing of the assembly events shows time-correlated metabolic dysfunction. The biological impact begins with assembly-induced endosomal disruption that reduces glucose transport into the cells, which, in turn, stymies mitochondrial respiration.


Assuntos
Imagem Óptica , Humanos , Endossomos/metabolismo , Nanofibras/química , Linhagem Celular , Animais
14.
Angew Chem Int Ed Engl ; 63(18): e202400101, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38407424

RESUMO

Investigations into the selective oxidation of inert sp3 C-H bonds using polymer photocatalysts under mild conditions have been limited. Additionally, the structure-activity relationship of photocatalysts often remains insufficiently explored. Here, a series of thiophene-based covalent triazine frameworks (CTFs) are used for the efficient and selective oxidation of hydrocarbons to aldehydes or ketones under ambient aerobic conditions. Spectroscopic methods conducted in situ and density functional theory (DFT) calculations revealed that the sulfur atoms within the thiophene units play a pivotal role as oxidation sites due to the generation of photogenerated holes. The effect of photogenerated holes on photocatalytic toluene oxidation was investigated by varying the length of the spacer in a CTF donor-acceptor based photocatalyst. Furthermore, the manipulation of reactive oxygen species was employed to enhance selectivity by weakening the peroxidative capacity. As an illustrative example, this study successfully demonstrated the synthesis of a precursor of the neurological drug AMG-579 using a photocatalytic protocol.

15.
J Am Chem Soc ; 146(8): 5195-5203, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38275287

RESUMO

Single-molecule localization microscopy (SMLM) is a powerful technique to achieve super-resolution imaging beyond the diffraction limit. Although various types of blinking fluorophores are currently considered for SMLM, intrinsic blinking fluorophores remain rare at the single-molecule level. Here, we report the synthesis of nanographene-based intrinsic burst-blinking fluorophores for highly versatile SMLM. We image amyloid fibrils in air and in various pH solutions without any additive and lysosome dynamics in live mammalian cells under physiological conditions. In addition, the single-molecule labeling of nascent proteins in primary sensory neurons was achieved with azide-functionalized nanographenes via click chemistry. SMLM imaging reveals higher local translation at axonal branching with unprecedented detail, while the size of translation foci remained similar throughout the entire network. These various results demonstrate the potential of nanographene-based fluorophores to drastically expand the applicability of super-resolution imaging.


Assuntos
Piscadela , Corantes Fluorescentes , Animais , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos , Lisossomos/metabolismo , Mamíferos/metabolismo
16.
Nat Commun ; 15(1): 39, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169470

RESUMO

Artificial organelles can manipulate cellular functions and introduce non-biological processes into cells. Coacervate droplets have emerged as a close analog of membraneless cellular organelles. Their biomimetic properties, such as molecular crowding and selective partitioning, make them promising components for designing cell-like materials. However, their use as artificial organelles has been limited by their complex molecular structure, limited control over internal microenvironment properties, and inherent colloidal instability. Here we report the design of dipeptide coacervates that exhibit enhanced stability, biocompatibility, and a hydrophobic microenvironment. The hydrophobic character facilitates the encapsulation of hydrophobic species, including transition metal-based catalysts, enhancing their efficiency in aqueous environments. Dipeptide coacervates carrying a metal-based catalyst are incorporated as active artificial organelles in cells and trigger an internal non-biological chemical reaction. The development of coacervates with a hydrophobic microenvironment opens an alternative avenue in the field of biomimetic materials with applications in catalysis and synthetic biology.


Assuntos
Células Artificiais , Elementos de Transição , Dipeptídeos , Células Artificiais/química , Condensados Biomoleculares , Elementos de Transição/química , Catálise , Organelas/química
17.
Macromol Biosci ; 24(2): e2300197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37639236

RESUMO

Encapsulating drugs into functionalized nanoparticles (NPs) is an alternative to reach the specific therapeutic target with lower doses. However, when the NPs are in contact with physiological media, proteins adsorb on their surfaces, forming a protein corona (PC) biomolecular layer, acquiring a distinct biological identity that alters their interactions with cells. Itraconazole (ITZ), an antifungal agent, is encapsulated into PEGylated and/or functionalized NPs with high specificity for macrophages. It is evaluated how the PC impacts their cell uptake and antifungal effect. The minimum inhibitory concentration and colony-forming unit assays demonstrate that encapsulated ITZ into poly(ethylene glycol) (PEG) NPs improves the antifungal effect compared with NPs lacking PEGylation. The improvement can be related to the synergistic effect of the encapsulated ITZ and NPs composition and the reduction of PC formation in PEG NPs. Functionalized NPs with anti-F4/80 and anti-MARCO antibodies, or mannose without PEG and treated with PC, show an improved uptake but, in the presence of PEG, significantly reduce the endocytosis, dominating the stealth effect from PEG. Therefore, the PC plays a crucial role in the nanosystem uptake and antifungal effects, which suggests the need for in vivo model studies to evaluate the effect of PC in the specificity and biodistribution.


Assuntos
Nanopartículas , Coroa de Proteína , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Distribuição Tecidual , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Polietilenoglicóis , Nanopartículas/uso terapêutico
18.
J Extracell Vesicles ; 12(12): e12399, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38124271

RESUMO

The influence of a protein corona on the uptake of nanoparticles in cells has been demonstrated in various publications over the last years. Extracellular vesicles (EVs), can be seen as natural nanoparticles. However, EVs are produced under different cell culture conditions and little is known about the protein corona forming on EVs and its influence on their uptake by target cells. Here, we use a proteomic approach in order to analyze the protein composition of the EVs themselves and the protein composition of a human blood plasma protein corona around EVs. Moreover, we analyze the influence of the protein corona on EV uptake into human monocytes and compare it with the influence on the uptake of engineered liposomes. We show that the presence of a protein corona increases the uptake of EVs in human monocytes. While for liposomes this seems to be triggered by the presence of immunoglobulins in the protein corona, for EVs blocking the Fc receptors on monocytes did not show an influence of uptake. Therefore, other mechanisms of docking to the cell membrane and uptake are most like involved, demonstrating a clear difference between EVs and liposomes as technically produced nanocarriers.


Assuntos
Vesículas Extracelulares , Coroa de Proteína , Humanos , Vesículas Extracelulares/metabolismo , Coroa de Proteína/metabolismo , Lipossomos , Proteômica , Transporte Biológico
19.
Artigo em Inglês | MEDLINE | ID: mdl-37903081

RESUMO

Lipid and polymer vesicles provide versatile means of creating systems that mimic the architecture of cells. However, these constructs cannot mimic the adaptive compartmentalization observed in cells, where the assembly and disassembly of subcompartments are dynamically modulated by environmental cues. Here, we describe a fully polymeric microreactor with a coacervate-in-vesicle architecture that exhibits an adaptive response to pH. The system was fabricated by microfluidic generation of semipermeable biomimetic polymer vesicles within 1 min using oleyl alcohol as the oil phase. The polymersomes allowed for the diffusion of protons and substrates acting as external signals. Using this method, we were able to construct adaptive microreactors containing internal polyelectrolyte-based catalytic organelles capable of sequestering and localizing enzymes and reaction products in a dynamic process driven by an external stimulus. This approach provides a platform for the rapid and efficient construction of robust adaptive microreactors that can be used in catalysis, biosensing, and cell mimicry.

20.
Acta Biomater ; 172: 355-368, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839632

RESUMO

The intracellular protein corona has not been fully investigated in the field of nanotechnology-biology (nano-bio) interactions. To effectively understand intracellular protein corona formation and dynamics, we established a workflow to isolate the intracellular protein corona at different uptake times of two nanoparticles - magnetic hydroxyethyl starch nanoparticles (HES-NPs) and magnetic human serum albumin nanocapsules (HSA-NCs). We performed label-free quantitative LC-MS proteomics to analyze the composition of the intracellular protein corona and correlated our findings with results from conventional methods for intracellular trafficking of nanocarriers, such as flow cytometry, transmission electron microscopy (TEM), and confocal microscopy (cLSM). We determined the evolution of the intracellular protein corona. At different time stages the protein corona of the HES-NPs with a slower uptake changed, but there were fewer changes in that of the HSA-NCs with a more rapid uptake. We identified proteins that are involved in macropinocytosis (RAC1, ASAP2) as well as caveolin. This was confirmed by blocking experiments and by TEM studies. The investigated nanocarrier predominantly trafficked from early endosomes as determined by RAB5 identification in proteomics and in cLSM to late endosomes/lysosomes (RAB7, LAMP1, cathepsin K and HSP 90-beta) We further demonstrated differences between nanoparticles with slower and faster uptake kinetics and determined the associated proteome at different time points. Analysis of the intracellular protein corona provides us with effective data to examine the intracellular trafficking of nanocarriers used in efficient drug delivery and intracellular applications. STATEMENT OF SIGNIFICANCE: Many research papers focus on the protein corona on nanoparticles formed in biological fluids, but there are hardly any articles dealing with proteins that come in contact with nanoparticles inside cells. The "intracellular protein corona" studied here is a far more complex and highly demanding field. Most nanocarriers are designed to be taken up into cells. Given this, we chose two different nanocarriers to reveal changes in the proteins in dendritic cells during contact at specific times. Further studies will allow us to examine molecular target proteins using these methods. Our research is a significant addition towards the goal of understanding and thus improving the efficacy of drug nanocarriers.


Assuntos
Nanocápsulas , Nanopartículas , Coroa de Proteína , Humanos , Proteômica , Nanopartículas/metabolismo , Proteoma , Albumina Sérica Humana , Proteínas Ativadoras de GTPase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA