Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731323

RESUMO

Two cohorts of Atlantic bluefin tuna (Thunnus thynnus) larvae were sampled in 2017 and 2018 during the peak of spawning in the Gulf of Mexico (GOM). We examined environmental variables, daily growth, otolith biometry and stable isotopes and found that the GOM18 cohort grew at faster rates, with larger and wider otoliths. Inter and intra-population analyses (deficient vs. optimal growth groups) were carried out for pre- and post-flexion developmental stages to determine maternal and trophodynamic influences on larval growth variability based on larval isotopic signatures, trophic niche sizes and their overlaps. For the pre-flexion stages in both years, the optimal growth groups had significantly lower δ15N, implying a direct relationship between growth potential and maternal inheritance. Optimal growth groups and stages for both years showed lower C:N ratios, reflecting a greater energy investment in growth. The results of this study illustrate the interannual transgenerational trophic plasticity of a spawning stock and its linkages to growth potential of their offsprings in the GOM.

2.
J Plankton Res ; 44(5): 763-781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045950

RESUMO

We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by the microbial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspension-feeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (~4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish.

3.
PeerJ ; 9: e11568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178457

RESUMO

The highly migratory Atlantic bluefin tuna (ABFT) is currently managed as two distinct stocks, in accordance with natal homing behavior and population structuring despite the absence of barriers to gene flow. Larval fish are valuable biological material for tuna molecular ecology. However, they have hardly been used to decipher the ABFT population structure, although providing the genetic signal from successful breeders. For the first time, cooperative field collection of tuna larvae during 2014 in the main spawning area for each stock, the Gulf of Mexico (GOM) and the Mediterranean Sea (MED), enabled us to assess the ABFT genetic structure in a precise temporal and spatial frame exclusively through larvae. Partitioning of genetic diversity at nuclear microsatellite loci and in the mitochondrial control region in larvae spawned contemporarily resulted in low significant fixation indices supporting connectivity between spawners in the main reproduction area for each population. No structuring was detected within the GOM after segregating nuclear diversity in larvae spawned in two hydrographically distinct regions, the eastern GOM (eGOM) and the western GOM (wGOM), with the larvae from eGOM being more similar to those collected in the MED than the larvae from wGOM. We performed clustering of genetically characterized ABFT larvae through Bayesian analysis and by Discriminant Analysis of Principal Components (DAPC) supporting the existence of favorable areas for mixing of ABFT spawners from Western and Eastern stocks, leading to gene flow and apparent connectivity between weakly structured populations. Our findings suggest that the eastern GOM is more prone for the mixing of breeders from the two ABFT populations. Conservation of this valuable resource exploited for centuries calls for intensification of tuna ichthyoplankton research and standardization of genetic tools for monitoring population dynamics.

5.
PLoS One ; 10(7): e0133406, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225849

RESUMO

The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6-10 mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlying microzooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages.These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton-zooplankton-larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvae.


Assuntos
Isótopos de Carbono/metabolismo , Larva/crescimento & desenvolvimento , Isótopos de Nitrogênio/metabolismo , Atum/crescimento & desenvolvimento , Animais , Fenômenos Biológicos/fisiologia , Dieta , Ecologia , Ecossistema , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Golfo do México , Larva/metabolismo , Região do Mediterrâneo , Estado Nutricional/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Temperatura , Atum/metabolismo , Zooplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA