RESUMO
In this study, we investigated the actions of high homocysteine (Hcy) levels (100 and 500 microM) on the cytoskeleton of C6 glioma cells. Results showed that the predominant cytoskeletal response was massive formation of actin-containing filopodia at the cell surface that could be related with Cdc42 activation and increased vinculin immunocontent. In cells treated with 100 microM Hcy, folic acid, trolox, and ascorbic acid, totally prevented filopodia formation, while filopodia induced by 500 microM Hcy were prevented by ascorbic acid and attenuated by folic acid and trolox. Moreover, competitive NMDA ionotropic antagonist DL-AP5 totally prevented the formation of filopodia in both 100 and 500 microM Hcy treated cells, while the metabotropic non-selective group I/II antagonist MCPG prevented the effect of 100 microM Hcy but only slightly attenuated the effect induced by of 500 microM Hcy on actin cytoskeleton. The competitive non-NMDA ionotropic antagonist CNQX was not able to prevent the effects of Hcy on the reorganization of actin cytoskeleton in the two concentrations used. Also, Hcy-induced hypophosphorylation of vimentin and glial fibrillary acidic protein (GFAP) and this effect was prevented by DL-AP5, MCPG, and CNQX. In conclusion, our results show that Hcy target the cytoskeleton of C6 cells probably by excitoxicity and/or oxidative stress mechanisms. Therefore, we could propose that the dynamic restructuring of the actin cytoskeleton of glial cells might contribute to the response to the injury provoked by elevated Hcy levels in brain.
Assuntos
Actinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Homocisteína/farmacologia , Filamentos Intermediários/metabolismo , Neuroglia/citologia , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Linhagem Celular , Cromanos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Fólico/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fosforilação , Ratos , Vimentina/metabolismo , Complexo Vitamínico B/farmacologiaRESUMO
The aim of the present work was to investigate the actions of a chemically induced chronic hyperhomocysteinemia model on intermediate filaments (IFs) of cortical and hippocampal neural cells and explore signaling mechanisms underlying such effects. Results showed that in hyperhomocysteinemic rats the expression of neural IF subunits was affected. In cerebral cortex, glial fibrillary acidic protein (GFAP) expression was donwregulated while in hippocampus high and middle molecular weight neurofilament subunits (NF-H and NF-M, respectively) were up-regulated. Otherwise, the immunocontent of IF proteins was unaltered in cerebral cortex while in hippocampus the immunocontent of cytoskeletal-associated low molecular weight neurofilament (NF-L) and NF-H subunits suggested a stoichiometric ratio consistent with a decreased amount of core filaments enriched in lateral projections. These effects were not accompanied by an alteration in IF phosphorylation. In vitro results showed that 500muM Hcy-induced protein phosphatases 1-, 2A- and 2B-mediated hypophosphorylation of NF subunits and GFAP in hippocampal slices of 17-day-old rats without affecting the cerebral cortex, showing a window of vulnerability of cytoskeleton in developing hippocampus. Ionotropic and metabotropic glutamate receptors were involved in this action, as well as Ca(2+) release from intracellular stores through ryanodine receptors. We propose that the mechanisms observed in the hippocampus of 17-day-old rats could support the neural damage observed in these animals.
Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Hiper-Homocisteinemia/metabolismo , Filamentos Intermediários/metabolismo , Envelhecimento , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Doença Crônica , Modelos Animais de Doenças , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Técnicas In Vitro , Proteínas de Filamentos Intermediários/metabolismo , Fosforilação , Ratos , Ratos Wistar , Receptores de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismoRESUMO
The effects of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] are mainly mediated by nuclear receptors modulating gene expression. However, there are increasing evidences of nongenomic mechanisms of this hormone associated with kinase- and calcium-activated signaling pathways. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of 1,25(OH)(2)D(3) on vimentin phosphorylation in 15-day-old rat testes. Results showed that 1,25(OH)(2)D(3) at concentrations ranging from 1 nM to 1 microM increased vimentin phosphorylation independent of protein synthesis. We also demonstrated that the mechanisms underlying the hormone action involve protein kinase C activation in a phospholipase C-independent manner. Moreover, we showed that the participation of protein kinase A, extracellular regulated protein kinase (ERK), and intra- and extracellular Ca(2+) mediating the effects of 1,25(OH)(2)D(3) on the cytoskeleton. In addition, we investigated the effect of different times of exposure to the hormone on total and phosphoERK1/2 or c-Jun N-terminal kinases 1/2 (JNK1/2) in immature rat testis. Results showed that the total levels of ERK1/2 and JNK1/2 were unaltered from 1 to 15 min exposure to 1,25(OH)(2)D(3). However, the phosphoERK1/2 levels significantly increased at 1 and 5 min 1,25(OH)(2)D(3) treatment. Furthermore, phosphoJNK1 levels were decreased at 10 and 15 min 1,25(OH)(2)D(3) exposure, while phosphoJNK 2 levels were diminished at 5, 10 and 15 min treatment with the hormone. These findings demonstrate that 1,25(OH)(2)D(3) may modulate vimentin phosphorylation through nongenomic Ca(2+)-dependent mechanisms in testis cells.