Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37106848

RESUMO

Leatherback turtles migrate long distances between nesting beaches and distant foraging areas worldwide. This study analyzes the genetic diversity, life history stage, spatiotemporal distribution, and associated threats of a foraging aggregation in the Southwest Atlantic Ocean. A total of 242 leatherbacks stranded or bycaught by artisanal fisheries were recorded from 1997 to 2021 in Uruguay, with sizes ranging from 110.0 to 170.0 cm carapace lengths, indicating that the aggregation is composed of large juveniles and adults. Results of Bayesian mixed-stock analysis show that leatherbacks come primarily from the West African rookeries, based on mitochondrial DNA sequences obtained from 59 of the turtles representing seven haplotypes, including a novel one (Dc1.7). The main threat identified in the area is the fisheries bycatch but most of the carcasses observed were badly decomposed. There was significant seasonal and interannual variability in strandings that is likely associated with the availability of prey and the intensity of the fishing effort. Taken together, these findings reinforce the importance of these South American foraging areas for leatherbacks and the need to determine regional habitat use and migratory routes across the broader Atlantic region, in order to develop effective conservation measures to mitigate threats both at nesting beaches and foraging areas.

2.
Ecol Evol ; 12(11): e9548, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447590

RESUMO

Conservation of green sea turtles (Chelonia mydas) benefits from knowledge of population connectivity across life stages. Green turtles are managed at the level of genetically discrete rookeries, yet individuals from different rookeries mix at foraging grounds; therefore, rookeries may be impacted by processes at foraging grounds. Bimini, Bahamas, hosts an important foraging assemblage, but rookery contributions to this assemblage have never been resolved. We generated mitochondrial DNA sequences for 96 foraging green turtles from Bimini and used Mixed Stock Analysis to determine rookery contributions to this population using 817 and 490 base pair (bp) rookery baseline data. The MSA conducted with 817 bp data indicated that Quintana Roo, Mexico, and Central Eastern Florida contributed most to the Bimini population. The MSA conducted with 490 bp data indicated that Southwest Cuba and Central Eastern Florida contributed the most to Bimini. The results of the second MSA differ from a previous study undertaken with 490 bp data, conducted in Great Inagua, Bahamas, which suggested that Tortuguero, Costa Rica, contributed the most to that foraging assemblage. Large credible intervals in our results do not permit explicit interpretation of individual rookery contributions, but our results do indicate substantial relative differences in rookery contributions to two Bahamian foraging assemblages which may be driven by oceanic currents, rookery sizes, and possibly juvenile natal homing. Our findings may implicate a shift in contributions to the Bahamas over two decades, highlighting the importance of regularly monitoring rookery contributions and resolving regional recruitment patterns to inform conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA