RESUMO
The mechanisms of action of humic substances (HS) as growth promoters in poultry are unknown. In this study, the productive performance, histology, and number of goblet cells (GC) in the intestinal villi of broilers under steady-state digestive conditions and under abrupt changes in diet with the addition of HS was evaluated. Broilers housed individually were offered three treatments from 14−28 days: 1 = diet with white corn/soybean meal, without growth promoter antibiotics (nonGPA); 2 = with GPA (GPA); and 3 = with 0.3% HS. At day 28, two diets were suddenly introduced: (A) white corn/soybean meal plus dried distillers' grains with solubles (DDGS); and (B) white/blue corn/soybean meal/DDGS, keeping the three original treatments. Diets A and B were also exchanged on day 37. FCR was lower with GPA and HS compared to nonGPA from 14−38 days (p < 0.05); at day 28, under steady-state digestive conditions, HS had a similar effect to GPA on the histology and GC number in the jejunum villi. The number of GC in the jejunum of HS-fed broilers on days 29 and 38, after diet changes, behaves similarly to that of AGP-fed broilers (p > 0.05). HS appears to strengthen the mucosal protection of the epithelium of the intestine.
RESUMO
Humic substances (HS) from different sources have been evaluated to replace or reduce the use of growth promoter antibiotics (GPA) in the feeds of broiler chickens. The objective was to evaluate the growth performance, tibia measurements, nutrient balance, meat quality, and microbiological status of broiler fed with an HS extract (EHS) under ad libitum (ADLIB) or feed restriction (REST). Individually caged broilers (n = 180, 14-35 day of age) were assigned to a factorial arrangement of three dietary treatments: (1) positive control with bacitracin methylene disalicylate (BMD) and salinomycin; (2) negative control without BMD nor salinomycin, and (3) same as negative control with 0.25% EHS, and two feeding regimens 1) ADLIB or REST for 24 h on d 1, 7, and 14. Results were subjected to ANOVA. Positive control and EHS-fed broilers showed higher carcass yield (p < 0.05) and lower oocyst excretion (p < 0.01) compared to negative control birds. Lactic acid bacteria (LAB) and Clostridium perfringens (C. perfringens) were higher in negative control and EHS-broilers compared to positive control (p < 0.01). In conclusion, higher carcass yield, lower C. perfringens and oocyst excretion were found in positive control and higher carcass yield, higher LAB and lower oocyst excretion were found in EHS-fed broilers. Broilers subjected to REST had reduced growth performance and meat quality. In conclusion, EHS could be used to increase the carcass yield and beneficial LAB in broilers.