Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36297855

RESUMO

Three series of polyesters based on monomer combinations of ε-caprolactone (ε-CL), ethylene brassylate (EB), and l-Lactide (LLA) with the alkyl substituted lactone ε-decalactone (ε-DL) were synthesized at different molar ratios. Copolymers were obtained via ring opening polymerization (ROP) employing TBD (1,5,7-triazabicyclo-[4.4.0]-dec-5-ene), an organic catalyst which can be handled under normal conditions, avoiding the use of glove box equipment. The molar monomer composition of resulting copolymers differed from theoretical values due to lower ε-DL reactivity; their Mn and Mw values were up to 14 kDa and 22.8 kDa, respectively, and distributions were (Ɖ) ≤ 2.57. The thermal stability of these materials suffered due to variations in their ε-DL molar content. Thermal transitions such as melting (Tm) and crystallization (Tc) showed a decreasing tendency as ε-DL molar content increased, while glass transition (Tg) exhibited minor changes. It is worth mentioning that changes in monomer composition in these polyesters have a strong impact on their thermal performance, as well as in their crystallization degree. Consequently, variations in their chemical structure may have an effect on hydrolyic degradation rates. It should be noted that, in future research, some of these copolymers will be exposed to hydrolytic degradation experiments, including characterizations of their mechanical properties, to determine their adequacy in potential use in the development of soft medical devices.

2.
Polymers (Basel) ; 13(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451347

RESUMO

This article proposes a process to prepare fully bio-based elastomer nanocomposites based on polyfarnesene and cellulose nanocrystals (CNC). To improve the compatibility of cellulose with the hydrophobic matrix of polyfarnesene, the surface of CNC was modified via plasma-induced polymerization, at different powers of the plasma generator, using a trans-ß-farnesene monomer in the plasma reactor. The characteristic features of plasma surface-modified CNC have been corroborated by spectroscopic (XPS) and microscopic (AFM) analyses. Moreover, the cellulose nanocrystals modified at 150 W have been selected to reinforce polyfarnesene-based nanocomposites, synthesized via an in-situ coordination polymerization using a neodymium-based catalytic system. The effect of the different loading content of nanocrystals on the polymerization behavior, as well as on the rheological aspects, was evaluated. The increase in the storage modulus with the incorporation of superficially modified nanocrystals was demonstrated by rheological measurements and these materials exhibited better properties than those containing pristine cellulose nanocrystals. Moreover, we elucidate that the viscoelastic moduli of the elastomer nanocomposites are aligned with power-law model systems with characteristic relaxation time scales similar to commercial nanocomposites, also implying tunable mechanical properties. In this foreground, our findings have important implications in the development of fully bio-based nanocomposites in close competition with the commercial stock, thereby producing alternatives in favor of sustainable materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA