Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 192: 110241, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980301

RESUMO

Since cacao beans accumulate Cd in high levels and restrictions have been imposed on safe levels of chocolate consumption, concern about whether or not cacao trees store other toxic elements seems to be inevitable. Following a previous study in Ecuador examining Cd content in five cacao varieties collected in pristine areas and in places impacted by oil activities, we present here the concentrations of 11 trace elements (TEs) (As, Ba, Co, Cu, Cr, Mo, Mn, Ni, Pb, V and Zn) in soils, cacao tissues (leaves, pod husks, beans) and cocoa liquor (CL). Several TEs showed concentrations in topsoils above the Ecuadorian limits, and may have a mixed natural and anthropogenic origin. Ba and Mo concentrations in cacao tissues are slightly higher than those reported in other surveys, but this was not the case for toxic elements (As and Pb). TE contents are lower in CL, than in beans, except for Pb and Co, but no risk was identified for human health. Compared with control areas, Enrichment Factors were below 2 in impacted areas, except for Ba. Transfer factors (from soils to cacao) indicated that cacao does not accumulate TEs. A positive correlation was found between Cd and Zn in topsoils and cacao tissues for the CCN-51 variety, and between Cd and Ni for the Nacional variety. Identifying patterns of TE distribution and potential interactions in order to explain plant internal mechanisms, which is also dependent on the cacao variety, is a difficult task and needs further research.


Assuntos
Cacau , Metais Pesados , Poluentes do Solo , Oligoelementos , Cádmio/análise , Equador , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Oligoelementos/análise
2.
Environ Sci Pollut Res Int ; 26(20): 20052-20063, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30145761

RESUMO

At the global scale, urban agriculture is increasingly developing in cities due to demographic growth and sustainable food concerns. But, urban soils are frequently polluted with metals. In urban gardens, organic matter is also commonly added both to valorize organic household waste and to promote biophysicochemical fertility. As earthworms promote the decomposition and the recycling of soil organic matter, they can also influence the biogeochemical cycle of metals in urban polluted soils. In order to produce safe vegetables in urban areas, it is crucial to highlight the mechanisms involved in complex soil-earthworm-plant ecosystems. An experiment was set up to examine these relationships using lettuce cultivated in controlled conditions with RHIZOtest® devices. Thanks to the RHIZOtest® devices, metal transfer and bioaccessibility were for the first time compared for urban polluted soil without (1-urban soil polluted with Pb, Cd, Cu, and Zn: essential or toxic metals currently found in environment, SNB) and with bioturbation (2-this metal-polluted soil subjected to earthworm bioturbation, SB) and earthworm casts (3-earthworm casts produced in this polluted soil and naturally enriched in organic matter and microorganisms, T). Metal concentration, phytoavailability, and human gastric bioaccessibility were determined in the different samples. Results showed that earthworm bioturbation increased the phytoavailability of all the metals. For the experimental condition SB, the phytoavailability of metals was increased up to 75% compared to SNB. In addition, surprisingly, metal phytoavailability was always superior in SB compared to earthworm casts (T). Moreover, earthworms led to an increase in Zn gastric bioaccessibility up to 10% in the soils in the same way as for phytoavailability, meaning Zn bioaccessibility in SB > T > SNB, whereas it remained unchanged in the lettuces. These data are important to promote sustainable agriculture activities in urban areas; actually, databases concerning different experimental conditions are needed to develop decision support tools.


Assuntos
Lactuca/química , Metais/farmacocinética , Oligoquetos/fisiologia , Poluentes do Solo/farmacocinética , Agricultura/métodos , Animais , Disponibilidade Biológica , Cidades , Exposição Dietética , Ecossistema , Contaminação de Alimentos , Humanos , Lactuca/crescimento & desenvolvimento , Metais/análise , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA