Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Struct ; 1233: 130100, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33619412

RESUMO

The uncontrollable outbreak of the novel coronavirus (COVID-19) rapidly affected almost 230 countries across the world and territories since last year'2020 and its transmission mainly due to respiratory droplets. To fight and protect against micron dimension (~1.4 µm) corona virus the usage of disposable medical masks is one and only trivial option for patients, doctors, health employers and in fact mandatory for kids to senior citizens, as well as public places in a risky environment. Ordinary medical masks unable to self-sterilize in order to recycle for other appliances resulting further destroying impact of societies high economic and environmental costs. To minimize this global pandemic issue this proposal explores novel mechanism for further commercialization of surgical mask of photo-thermal and self-cleaning functionalization. Indeed, depositing few layer ultra-thin graphene coating onto low-melting temperature non-woven mask by tempering a dual mode laser induced mechanism. Incoming aqueous droplets are bounced off due the super-hydrophobic states were treated on the mask surface. Superficial hydrophobic surface yields an advanced safety towards approaching respiratory droplets. Due to the huge absorption coefficient capability of the sunrays activated laser-induced mask may rapidly boost temperature exceeds 85ºC under sunlight illumination, causes making the mask reusable after sunlight distillation. For SARS/coronavirus/ aerosolized bacteria, laser induced graphene mask is a recent breakthrough in superior antibacterial capacity. Furthermore, cost-effective and ultra-thin layered mask formulation recycled directly utilizes solar-driven desalination with remarkable self-exclusion performance for indelible usability. Featured review article, deals with remarkable achievements from forthcoming experimentation which may be inspired with layered mask designing by more progressive materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA