RESUMO
Maltodextrin (DE 20) and gelatin (4:1, w/w, respectively) were investigated as encapsulant materials for lemongrass (Cymbopogon citratus DC. Stapf) essential oil microencapsulation by freeze-drying. Three formulations were prepared: M1 (5% essential oil), M2 (10% essential oil), and M3 (15% essential oil), all in w/w. Microparticles were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, water activity measurement, thermogravimetric and derivative thermogravimetric analysis, differential scanning calorimetry, and antioxidant activity analysis. Yield and microencapsulation efficiency were also determined. The results showed the promising potential of maltodextrin and gelatin as encapsulants and confirmed the feasibility of preparing C. citratus essential oil microparticles by freeze-drying. Microencapsulation improved the oil's thermal and oxidative stability, providing protection from volatilization and environmental conditions. Scanning electron microscopic examination of M1 revealed a closed, pore-free surface. M1 had higher yield and microencapsulation efficiency, showing great commercial potential for its reduced storage, transport, and distribution costs.
Assuntos
Antioxidantes/química , Cymbopogon/química , Microesferas , Óleos Voláteis/química , Liofilização , Gelatina/química , Polissacarídeos/químicaRESUMO
BACKGROUND: Corn zein is a predominatly hydrophobic protein, forming films with relatively good water resistance. Tannic acid, especially in its oxidized form, is supposed to cross-link proteins including zein, which may be explored to further enhance the water resistance of zein films. The effects of different contents (0-8 wt%) of unoxidized and oxidized tannic acid (uTA and oTA, respectively) on the properties of zein films at different pH values (4-9) were studied, according to central composite designs. RESULTS: Increasing tannic acid contents and pH values resulted in decreased water solubility and increased tensile strength and modulus of films. The presence of tannic acid provided the films with a yellowish color and increased opacity. Paired t-tests indicated that oTA films presented higher tensile strength, lower water vapor permeability and lower water solubility than uTA films. CONCLUSION: Higher tannic acid contents and pH values resulted in films with better overall physical properties, which might be ascribed to cross-linking, although the films were still not water resistant. The resulting films have potential to be used for food packaging and coating applications. © 2017 Society of Chemical Industry.