Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phys Life Rev ; 48: 176-197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320380

RESUMO

It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.


Assuntos
Poluição do Ar , Dor Crônica , Neuralgia , Humanos , Animais , Dor Crônica/complicações , Neuralgia/etiologia , Estações do Ano
2.
Biophys J, v. 123, n. 3, 414a, fev. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5483
3.
Phys Life Rev, v. 48, p. 176-197, mar. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5270

RESUMO

It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.

4.
Int J Mol Sci, v. 23, n. 19, 11571, set. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4556

RESUMO

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for β-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.

5.
Br J Pharmacol, v. 179, n. 8, p. 1640-1660, jun 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3819

RESUMO

Depression and anxiety commonly occur in chronic pain states, and the co-existence of these diseases worsen outcomes for both disorders and may reduce treatment adherence and response. Despite the advances in the knowledge of chronic pain mechanisms, pharmacological treatment is still unsatisfactory. Research based on exposure to environmental enrichment (EE) is currently under investigation and seems to offer a promising low-cost strategy with no side effects. In this review, we discuss the role of inflammation as a major biological substrate and aetiological factor of chronic pain and depression/anxiety and report a collection of preclinical evidence of the effects and mechanisms of EE. As microglia participates in the development of both conditions, we also discuss microglia as a potential target underlying the beneficial actions of EE in chronic pain and comorbid depression/anxiety. We also discuss how alternative interventions in clinical guidelines, such as EE, may improve treatment compliance and patient outcomes.

6.
Exp Neurol ; 332: 113390, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598929

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14 days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.


Assuntos
Meio Ambiente , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/lesões , Animais , Sobrevivência Celular , Constrição Patológica , Endorfinas/sangue , Encefalinas/sangue , Hiperalgesia/patologia , Masculino , Fibras Nervosas/patologia , Neuralgia/etiologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Nervo Isquiático/patologia , Medula Espinal/metabolismo , Suporte de Carga
7.
Front Immunol, v. 11, 591563, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3312

RESUMO

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 μg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.

8.
Exp Neurol, v. 332, 113390, jun. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3080

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14?days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.

9.
Toxins (Basel) ; 11(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757011

RESUMO

Neuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities. In spite of its potential benefits, the toxicity of CTX remains a limiting factor for its use. SBA-15 is an inert nanostructured mesoporous silica that, when used as a vehicle, may reduce toxicity and potentiate the activity of different compounds. Based on this, we propose to conjugate crotoxin with SBA-15 (CTX:SBA-15) in order to investigate if when adsorbed to silica, CTX would have its toxicity reduced and its analgesic effect enhanced in neuropathic pain induced by the partial sciatic nerve ligation (PSNL) model. SBA-15 enabled an increase of 35% of CTX dosage. Treatment with CTX:SBA-15 induced a long-lasting reduction of mechanical hypernociception, without modifying the previously known pathways involved in antinociception. Moreover, CTX:SBA-15 reduced IL-6 and increased IL-10 levels in the spinal cord. Surprisingly, the antinociceptive effect of CTX:SBA-15 was also observed after oral administration. These data indicate the potential use of the CTX:SBA-15 complex for neuropathic pain control and corroborates the protective potential of SBA-15.


Assuntos
Analgésicos/uso terapêutico , Crotoxina/uso terapêutico , Neuralgia/tratamento farmacológico , Dióxido de Silício/uso terapêutico , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Crotoxina/administração & dosagem , Crotoxina/efeitos adversos , Hiperalgesia/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas , Nociceptividade/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Dióxido de Silício/administração & dosagem , Dióxido de Silício/efeitos adversos , Medula Espinal/metabolismo
10.
Behav Brain Res ; 364: 442-446, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29137946

RESUMO

Environmental enrichment (EE) can alter anxiety as well as perception of nociceptive stimuli, suggesting a relationship between well-being and analgesia. Considering that, we aimed to evaluate the influence of different EE types on anxiety and peripheral pain sensitivity of male Wistar rats. Animals were submitted to two different types of EE: On the first one, animals were housed in standard size cages after weaning and received three different objects, one type per week, on a regular basis (simple EE - sEE). On the second one, animals were born in an already enriched environment and, after five weeks, were housed in larger cages and received five different objects, three of each type per week, on a regular basis (improved EE - iEE). Control group remained in standard cages and did not receive objects. Within 7 weeks of life, anxiety and thermal sensibility were evaluated using elevated plus maze and tail flick tests, respectively. Mechanical hyperalgesia was analyzed in the presence of acute and chronic noxious stimuli by paw pressure test. Both EE protocols tested were effective in diminish anxiety but they did not alter thermal sensibility. On the other hand, sEE protocol did not alter acute and chronic induced mechanical hypersensitivity, whereas iEE completely abolished such pain behavior, even without exercise wheel as part of the enrichment. Our results show that specific parameters (anxiety and pain sensitivity) can be differentially modulated depending on EE protocol used, making possible the implementation of welfare to experimental animals in pain research.


Assuntos
Ansiedade/terapia , Manejo da Dor/métodos , Dor/metabolismo , Animais , Transtornos de Ansiedade/terapia , Comportamento Animal , Meio Ambiente , Comportamento Exploratório , Masculino , Dor/fisiopatologia , Limiar da Dor/fisiologia , Ratos , Ratos Wistar
11.
Exp Cell Res, v. 382, n. 2, 111475, set. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4135

RESUMO

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.

12.
Toxins, v. 11, n. 12, p. 679, nov. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2915

RESUMO

Neuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities. In spite of its potential benefits, the toxicity of CTX remains a limiting factor for its use. SBA-15 is an inert nanostructured mesoporous silica that, when used as a vehicle, may reduce toxicity and potentiate the activity of different compounds. Based on this, we propose to conjugate crotoxin with SBA-15 (CTX:SBA-15) in order to investigate if when adsorbed to silica, CTX would have its toxicity reduced and its analgesic effect enhanced in neuropathic pain induced by the partial sciatic nerve ligation (PSNL) model. SBA-15 enabled an increase of 35% of CTX dosage. Treatment with CTX:SBA-15 induced a long-lasting reduction of mechanical hypernociception, without modifying the previously known pathways involved in antinociception. Moreover, CTX:SBA-15 reduced IL-6 and increased IL-10 levels in the spinal cord. Surprisingly, the antinociceptive effect of CTX:SBA-15 was also observed after oral administration. These data indicate the potential use of the CTX:SBA-15 complex for neuropathic pain control and corroborates the protective potential of SBA-15

13.
Toxicon, v. 150, p. 168-174, ago. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2525

RESUMO

Freshwater stingray accidents cause an immediate, intense, and unrelieved pain which is followed by edema, erythema and necrosis formation. Treatment for stingray envenomation is based on administration of analgesic, antipyretic and anti-inflammatory drugs. Concerning pain control, it is prescribed to immerse punctured limb on hot water to alleviate pain. There are no studies demonstrating specific targets on which stingray venom acts to promote pain. Therefore, the aim of this work was to investigate some mechanisms of Potamotrygon motoro venom (PmV) that contribute to nociception induction. Evaluating spontaneous pain behavior in mice injected i.pl. with PmV, it was seen that PmV induced both neurogenic and inflammatory pain. PmV also induced hyperalgesia in both mice and rats, evaluated through electronic von Frey and rat paw pressure test, respectively. Partial inhibition of hyperalgesia was observed in mice treated with cromolyn or promethazine, which indicated that mast cell and histamine via H1 receptor participate in the inflammatory pain. To search for some targets involved in PmVinduced hyperalgesia, the participation of TRPV1, calcium channels, neurokinins, CGRP, and norepinephrine, was evaluated in rats. It was seen that PmV-induced hyperalgesia occurs with the participation of neurokinins, mainly via NK1 receptor, CGRP, and calcium influx, through both P/Q and L-type voltage-dependent calcium channels, besides TRPV1 activation. The data presented herein indicate that PmV causes hyperalgesia in rodents which is dependent on the participation of several neuroinflammatory mediators.

14.
Toxicon ; 76: 239-46, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24140924

RESUMO

Centipede envenomation is generally mild, and human victims usually manifest burning pain, erythema and edema. Despite the abundance and ubiquity of these animals, centipede venom has been poorly characterized in literature. For this reason, the aim of this work was to investigate local inflammatory features induced by Scolopendra viridicornis centipede envenomation in mice, evaluating edema formation, leukocyte infiltration, production of inflammatory mediators, and also performing histological analysis. The highest edematogenic activity induced by the venom, determined by plethysmometry, was noticed 0.5 h after injection in mice footpad. At 24 h, edema was still detected in animals that received 15 and 60 µg of venom, and at 48 h, only in animals injected with 60 µg of venom. In relation to leukocyte count, S. viridicornis venom induced cell recruitment, mainly neutrophils and monocytes/macrophages, in all doses and time periods analyzed in comparison with PBS-injected mice. An increase in lymphocytes was detected especially between 1 and 24 h at 60 µg dose. Besides, eosinophil recruitment was observed mainly for 15 and 60 µg doses in early time periods. Edema formation and cell recruitment were also confirmed by histological analysis. Moreover, S. viridicornis venom stimulated the release of IL-6, MCP-1, KC, and IL-1ß. Conversely, S. viridicornis venom did not induce the release of detectable levels of TNF-α. We demonstrated that the edematogenic activity induced by S. viridicornis venom was of rapid onset, and the venom stimulated secretion of pro-inflammatory mediators which contribute to the inflammatory reaction induced by S. viridicornis venom in an experimental model.


Assuntos
Venenos de Artrópodes/toxicidade , Inflamação/induzido quimicamente , Animais , Artrópodes/química , Quimiocina CCL2/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Linfócitos/efeitos dos fármacos , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA