Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Commun Biol ; 7(1): 1090, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237613

RESUMO

T cell immunoglobulin and mucin-containing molecule 3 (TIM-3) exhibits unique, cell type- and context-dependent characteristics and functions. Here, we report that TIM-3 on myeloid cells plays essential roles in modulating lung inflammation. We found that myeloid cell-specific TIM-3 knock-in (FSF-TIM3/LysM-Cre+) mice have lower body weight and shorter lifespan than WT mice. Intriguingly, the lungs of FSF-TIM3/LysM-Cre+ mice display excessive inflammation and features of disease-associated pathology. We further revealed that galectin-3 levels are notably elevated in TIM-3-overexpressing lung-derived myeloid cells. Furthermore, both TIM-3 blockade and GB1107, a galectin-3 inhibitor, ameliorated lung inflammation in FSF-TIM3/LysM-Cre+/- mice. Using an LPS-induced lung inflammation model with myeloid cell-specific TIM-3 knock-out mice, we demonstrated the association of TIM-3 with both lung inflammation and galectin-3. Collectively, our findings suggest that myeloid TIM-3 is an important regulator in the lungs and that modulation of TIM-3 and galectin-3 could offer therapeutic benefits for inflammation-associated lung diseases.


Assuntos
Galectina 3 , Receptor Celular 2 do Vírus da Hepatite A , Células Mieloides , Pneumonia , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Galectina 3/metabolismo , Galectina 3/genética , Células Mieloides/metabolismo , Camundongos , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Galectinas/metabolismo , Galectinas/genética , Pulmão/patologia , Pulmão/metabolismo
2.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273565

RESUMO

Exosomes are nanovesicles 30-150 nm in diameter released extracellularly. Those isolated from human body fluids reflect the characteristics of their cells or tissues of origin. Exosomes carry extensive biological information from their parent cells and have significant potential as biomarkers for disease diagnosis and prognosis. However, there are limited studies utilizing exosomes in postmortem diagnostics. In this study, we extended our initial research which identified the presence and established detection methodologies for exosomes in postmortem fluids. We analyzed exosomal miRNA extracted from plasma and pericardial fluid samples of a control group (n = 13) and subjects with acute myocardial infarction (AMI; n = 24). We employed next-generation sequencing (NGS) to investigate whether this miRNA could serve as biomarkers for coronary atherosclerosis leading to acute myocardial infarction. Our analysis revealed 29 miRNAs that were differentially expressed in the AMI group compared to the control group. Among these, five miRNAs exhibited more than a twofold increase in expression across all samples from the AMI group. Specifically, miR-486-5p levels were significantly elevated in patients with high-grade (type VI or above) atherosclerotic plaques, as per the American Heart Association criteria, highlighting its potential as a predictive biomarker for coronary atherosclerosis progression. Our results indicate that postmortem-derived exosomal microRNAs can serve as potential biomarkers for various human diseases, including cardiovascular disorders. This finding has profound implications for forensic diagnostics, a field critically lacking diagnostic markers.


Assuntos
Biomarcadores , Exossomos , MicroRNAs , Humanos , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Autopsia , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Líquido Pericárdico/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala
3.
J Biol Chem ; : 107790, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303917

RESUMO

Bone morphogenetic protein 2 (BMP2) and BMP6 are key regulators of systemic iron homeostasis. All BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments, but nothing is known about how BMP2 or BMP6 homodimeric or heterodimeric precursor proteins are proteolytically activated. Here, we conducted in vitro cleavage assays, which revealed that BMP2 is sequentially cleaved by furin at two sites, initially at a site upstream of the mature ligand, and then at a site adjacent to the ligand domain, while BMP6 is cleaved at a single furin motif. Cleavage of both sites of BMP2 is required to generate fully active BMP2 homodimers when expressed in Xenopus embryos or liver endothelial cells, and fully active BMP2/6 heterodimers in Xenopus. We analyzed BMP activity in Xenopus embryos expressing chimeric proteins consisting of the BMP2 prodomain and BMP6 ligand domain, or vice versa. We show that the prodomain of BMP2 is necessary and sufficient to generate active BMP6 homodimers and BMP2/6 heterodimers, whereas the BMP6 prodomain cannot generate active BMP2 homodimers or BMP2/6 heterodimers. We examined BMP2 and BMP6 homodimeric and heterodimeric ligands generated from native and chimeric precursor proteins expressed in Xenopus embryos. Whereas native BMP6 is not cleaved when expressed alone, it is cleaved to generate BMP2/6 heterodimers when co-expressed with BMP2. Furthermore, BMP2-6 chimeras are cleaved to generate BMP6 homodimers. Our findings reveal an important role for the BMP2 prodomain in dimerization and proteolytic activation of BMP6.

4.
Front Bioeng Biotechnol ; 12: 1392807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104626

RESUMO

Radiologists encounter significant challenges when segmenting and determining brain tumors in patients because this information assists in treatment planning. The utilization of artificial intelligence (AI), especially deep learning (DL), has emerged as a useful tool in healthcare, aiding radiologists in their diagnostic processes. This empowers radiologists to understand the biology of tumors better and provide personalized care to patients with brain tumors. The segmentation of brain tumors using multi-modal magnetic resonance imaging (MRI) images has received considerable attention. In this survey, we first discuss multi-modal and available magnetic resonance imaging modalities and their properties. Subsequently, we discuss the most recent DL-based models for brain tumor segmentation using multi-modal MRI. We divide this section into three parts based on the architecture: the first is for models that use the backbone of convolutional neural networks (CNN), the second is for vision transformer-based models, and the third is for hybrid models that use both convolutional neural networks and transformer in the architecture. In addition, in-depth statistical analysis is performed of the recent publication, frequently used datasets, and evaluation metrics for segmentation tasks. Finally, open research challenges are identified and suggested promising future directions for brain tumor segmentation to improve diagnostic accuracy and treatment outcomes for patients with brain tumors. This aligns with public health goals to use health technologies for better healthcare delivery and population health management.

5.
Cancer Res ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207402

RESUMO

Galectin-9 is a multifaceted regulator of various pathophysiological processes that exerts positive or negative effects in a context-dependent manner. Here, we elucidated the distinctive functional properties of galectin-9 on myeloid cells within the brain tumor microenvironment. Galectin-9-expressing cells were abundant at the hypoxic tumor edge in the tumor-bearing ipsilateral hemisphere compared to the contralateral hemisphere in an intracranial mouse brain tumor model. Galectin-9 was highly expressed in microglia and macrophages in tumor-infiltrating cells. In primary glia, both the expression and secretion of galectin-9 were influenced by tumors. Analysis of a human glioblastoma bulk RNA-sequencing dataset and a single-cell RNA-sequencing dataset from a murine glioma model revealed a correlation between galectin-9 expression and glial cell activation. Notably, the galectin-9high microglial subset was functionally distinct from the galectin-9neg/low subset in the brain tumor microenvironment. Galectin-9high microglia exhibited properties of inflammatory activation and higher rates of cell death, whereas galectin-9neg/low microglia displayed a superior phagocytic ability against brain tumor cells. Blockade of galectin-9 suppressed tumor growth and altered the activity of glial and T cells in a mouse glioma model. Additionally, glial galectin-9 expression was regulated by Hif-2α in the hypoxic brain tumor microenvironment. Myeloid-specific Hif-2α deficiency led to attenuated tumor progression. Together, these findings reveal that galectin-9 on myeloid cells is an immunoregulator and putative therapeutic target in brain tumors.

6.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948827

RESUMO

Bone morphogenetic protein 2 (BMP2) and BMP6 are key regulators of systemic iron homeostasis. All BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments, but nothing is known about how BMP2 or BMP6 homodimeric or heterodimeric precursor proteins are proteolytically activated. Here, we conducted in vitro cleavage assays, which revealed that BMP2 is sequentially cleaved by furin at two sites, initially at a site upstream of the mature ligand, and then at a site adjacent to the ligand domain, while BMP6 is cleaved at a single furin motif. Cleavage of both sites of BMP2 is required to generate fully active BMP2 homodimers when expressed in Xenopus embryos or liver endothelial cells, and fully active BMP2/6 heterodimers in Xenopus . We analyzed BMP activity in Xenopus embryos expressing chimeric proteins consisting of the BMP2 prodomain and BMP6 ligand domain, or vice versa. We show that the prodomain of BMP2 is necessary and sufficient to generate active BMP6 homodimers and BMP2/6 heterodimers, whereas the BMP6 prodomain cannot generate active BMP2 homodimers or BMP2/6 heterodimers. We examined BMP2 and BMP6 homodimeric and heterodimeric ligands generated from native and chimeric precursor proteins expressed in Xenopus embryos. Whereas native BMP6 is not cleaved when expressed alone, it is cleaved to generate BMP2/6 heterodimers when co-expressed with BMP2. Furthermore, BMP2-6 chimeras are cleaved to generate BMP6 homodimers. Our findings reveal an important role for the BMP2 prodomain in dimerization and proteolytic activation of BMP6.

7.
Science ; 384(6693): 312-317, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669572

RESUMO

Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

8.
Adv Healthc Mater ; 13(20): e2400142, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38566357

RESUMO

Nerve guidance conduits (NGCs) are widely developed using various materials for the functional repair of injured or diseased peripheral nerves. Especially, hydrogels are considered highly suitable for the fabrication of NGCs due to their beneficial tissue-mimicking characteristics (e.g., high water content, softness, and porosity). However, the practical applications of hydrogel-based NGCs are hindered due to their poor mechanical properties and complicated fabrication processes. To bridge this gap, a novel double-network (DN) hydrogel using alginate and gelatin by a two-step crosslinking process involving chemical-free gamma irradiation and ionic crosslinking, is developed. DN hydrogels (1% alginate and 15% gelatin), crosslinked with 30 kGy gamma irradiation and barium ions, exhibit substantially improved mechanical properties, including tensile strength, elastic modulus, and fracture stain, compared to single network (SN) gelatin hydrogels. Additionally, the DN hydrogel NGC exhibits excellent kink resistance, mechanical stability to successive compression, suture retention, and enzymatic degradability. In vivo studies with a sciatic defect rat model indicate substantially improved nerve function recovery with the DN hydrogel NGC compared to SN gelatin and commercial silicone NGCs, as confirm footprint analysis, electromyography, and muscle weight measurement. Histological examination reveals that, in the DN NGC group, the expression of Schwann cell and neuronal markers, myelin sheath, and exon diameter are superior to the other controls. Furthermore, the DN NGC group demonstrates increased muscle fiber formation and reduced fibrotic scarring. These findings suggest that the mechanically robust, degradable, and biocompatible DN hydrogel NGC can serve as a novel platform for peripheral nerve regeneration and other biomedical applications, such as implantable tissue constructs.


Assuntos
Alginatos , Raios gama , Gelatina , Hidrogéis , Regeneração Nervosa , Ratos Sprague-Dawley , Gelatina/química , Animais , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Alginatos/química , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Nervo Isquiático/fisiologia , Nervo Isquiático/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Alicerces Teciduais/química
10.
Small ; 20(23): e2308815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161254

RESUMO

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.


Assuntos
Encéfalo , Diferenciação Celular , Matriz Extracelular , Laminina , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/química , Encéfalo/metabolismo , Animais , Neurônios/metabolismo , Doenças Neuroinflamatórias/metabolismo , Suínos , Astrócitos/metabolismo , Microglia/metabolismo , Inflamação/patologia
11.
Mol Ther Nucleic Acids ; 34: 102071, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38046397

RESUMO

Heart failure is a leading cause of death and is often accompanied by activation of quiescent cardiac myofibroblasts, which results in cardiac fibrosis. In this study, we aimed to identify novel circular RNAs that regulate cardiac fibrosis. We applied transverse aortic constriction (TAC) for 1, 4, and 8 weeks in mice. RNA sequencing datasets were obtained from cardiac fibroblasts isolated by use of a Langendorff apparatus and then further processed by use of selection criteria such as differential expression and conservation in species. CircSMAD4 was upregulated by TAC in mice or by transforming growth factor (TGF)-ß1 in primarily cultured human cardiac fibroblasts. Delivery of si-circSMAD4 attenuated myofibroblast activation and cardiac fibrosis in mice treated with isoproterenol (ISP). si-circSmad4 significantly reduced cardiac fibrosis and remodeling at 8 weeks. Mechanistically, circSMAD4 acted as a sponge against the microRNA miR-671-5p in a sequence-specific manner. miR-671-5p was downregulated during myofibroblast activation and its mimic form attenuated cardiac fibrosis. miR-671-5p mimic destabilized fibroblast growth factor receptor 2 (FGFR2) mRNA in a sequence-specific manner and interfered with the fibrotic action of FGFR2. The circSMAD4-miR-671-5p-FGFR2 pathway is involved in the differentiation of cardiac myofibroblasts and thereby the development of cardiac fibrosis.

12.
Hip Pelvis ; 35(4): 233-237, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125272

RESUMO

Purpose: The objective of this study was to analyze the results from a cohort of patients who underwent a revision total hip arthroplasty (THA) using a dual mobility cup (DMC) implant. Materials and Methods: A retrospective review of revised THAs was conducted using the database from a single tertiary referral hospital. A total of 91 revision THAs from 91 patients were included in the study. There were 46 male hips and 45 female hips. The mean age was 56.3±14.6 years, and the mean follow-up period was 6.4±5.9 years. In performance of revision THAs, the DMC implants were used in 18 hips (19.8%), and the conventional implants were used in 73 hips (80.2%). Results: During the follow-up period, three dislocations were identified, and the overall dislocation rate was 3.3%. Early dislocation (at one month postoperatively) occurred in one patient, while late dislocation (at a mean of 7.5 years) occurred in two patients. There was no occurrence of dislocation in the DMC group (0%), and three dislocations were detected in the conventional group (4.1%). However, no significant difference in the rate of dislocation was observed between the two groups (P=0.891). Conclusion: Although the rate of dislocation was higher in the conventional group, there were no statistically significant differences between the two groups due to the small number of patients. Nevertheless, we believe that the dual mobility design is advantageous in terms of reducing dislocation rate and can be recommended as an option for a revision THA.

13.
Cells ; 12(18)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759495

RESUMO

With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Neoplasias Hepáticas/genética , Estudos Prospectivos , Biomarcadores , Microambiente Tumoral/genética
14.
Cancers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627184

RESUMO

HCC remains a lethal cancer type, with early detection being critical for improved patient outcomes. This study introduces a comprehensive methodological approach to identify the ITGA6 gene as a potential blood marker for early HCC (eHCC) detection. We initially analyzed the GSE114564 dataset encompassing various stages of liver disease, identifying 972 differentially expressed genes in HCC. A refined analysis yielded 59 genes specifically differentially expressed in early HCC, including ITGA6. Subsequent validation in multiple datasets confirmed the consistent upregulation of ITGA6 in HCC. In addition, when analyzing progression-free survival (PFS) within the entire patient cohort and overall survival (OS) specifically among patients classified as tumor grade G1, the group of patients characterized by high expression levels of ITGA6 displayed an elevated risk ratio in relation to prognosis. Further analyses demonstrated the predominant expression of ITGA6 in TECs and its enrichment in angiogenesis-related pathways. Additionally, positive correlations were found between ITGA6 expression and pro-tumorigenic immune cells, but not with anti-tumorigenic immune cells. Our study elucidates the potential of ITGA6 as a blood-based marker for HCC early detection and diagnosis and its complex interplay with the tumor microenvironment. Further research may lead to novel strategies for HCC management and patient care.

15.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240145

RESUMO

Epithelial-to-mesenchymal transition (EMT) plays a critical role in the development and progression of lung cancer by promoting its invasiveness and metastasis. Using integrative analyses of the public lung cancer database, we found that the expression levels of the tight junction proteins, zonula occluden (ZO)-1 and ZO-2, were lower in lung cancer tissues, including both lung adenocarcinoma and lung squamous cell carcinoma than in normal lung tissues analyzed using The Cancer Genome Atlas (TCGA). Although the ectopic expression or knockdown of ZO-1 and ZO-2 did not affect the growth of lung cancer cells, they significantly regulated cell migration and invasion. When M0 macrophages were co-cultured with ZO-1 or ZO-2 knockdown Calu-1 cells, M2-like polarization was efficiently induced. Conversely, co-culture of M0 THP-1 cells with A549 cells stably expressing ZO-1 or ZO-2 significantly reduced M2 differentiation. We also identified G protein subunit alpha q (GNAQ) as a potential ZO-1- and ZO-2-specific activator through analysis of correlated genes with the TCGA lung cancer database. Our results suggest that the GNAQ-ZO-1/2 axis may play a tumor-suppressive role in lung cancer development and progression and highlight ZO-1 and ZO-2 as key EMT- and tumor microenvironment-suppressive proteins. These findings provide new insights for the development of targeted therapies for lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Junções Íntimas/metabolismo , Microambiente Tumoral/genética , Neoplasias Pulmonares/genética , Transição Epitelial-Mesenquimal/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
16.
ACS Appl Mater Interfaces ; 15(23): 28684-28691, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37257080

RESUMO

Practical applications of Mg-metal batteries (MMBs) have been plagued by a critical bottleneck─the formation of a native oxide layer on the Mg-metal interface─which inevitably limits the use of conventional nontoxic electrolytes. The major aim of this work was to propose a simple and effective way to reversibly operate MMBs in combination with Mg(TFSI)2-diglyme electrolyte by forming a Ga-rich protective layer on the Mg metal (GPL@Mg). Mg metal was carefully reacted with a GaCl3 solution to trigger a galvanic replacement reaction between Ga3+ and Mg, resulting in the layering of a stable and ion-conducting Ga-rich protective film while preventing the formation of a native insulating layer. Various characterization tools were applied to analyze GPL@Mg, and it was demonstrated to contain inorganic-rich compounds (MgCO3, Mg(OH)2, MgCl2, Ga2O3, GaCl3, and MgO) roughly in a double-layered structure. The artificial GPL on Mg was effective in greatly reducing the high polarization for Mg plating and stripping in diglyme-based electrolyte, and the stable cycling was maintained for over 200 h. The one-step process suggested in this work offers insights into exploring a cost-effective approach to cover the Mg-metal surface with an ion-conducting artificial layer, which will help to practically advance MMBs.

17.
ACS Nano ; 17(9): 8153-8166, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37068137

RESUMO

Blood-brain barrier (BBB) remains one of the critical challenges in developing neurological therapeutics. Short single-stranded DNA/RNA nucleotides forming a three-dimensional structure, called aptamers, have received increasing attention as BBB shuttles for efficient brain drug delivery owing to their practical advantages over Trojan horse antibodies or peptides. Aptamers are typically obtained by combinatorial chemical technology, termed Systemic Evolution of Ligands by EXponential Enrichment (SELEX), against purified targets, living cells, or animal models. However, identifying reliable BBB-penetrating aptamers that perform efficiently under human physiological conditions has been challenging because of the poor physiological relevance in the conventional SELEX process. Here, we report a human BBB shuttle aptamer (hBS) identified using a human microphysiological system (MPS)-based SELEX (MPS-SELEX) method. A two-channel MPS lined with human brain microvascular endothelial cells (BMECs) interfaced with astrocytes and pericytes, recapitulating high-level barrier function of in vivo BBB, was exploited as a screening platform. The MPS-SELEX procedure enabled robust function-based screening of the hBS candidates, which was not achievable in traditional in vitro BBB models. The identified aptamer (hBS01) through five-round of MPS-SELEX exhibited high capability to transport protein cargoes across the human BBB via clathrin-mediated endocytosis and enhanced uptake efficiency in BMECs and brain cells. The enhanced targeting specificity of hBS01 was further validated both in vitro and in vivo, confirming its powerful brain accumulation efficiency. These findings demonstrate that MPS-SELEX has potential in the discovery of aptamers with high target specificity that can be widely utilized to boost the development of drug delivery strategies.


Assuntos
Aptâmeros de Nucleotídeos , Animais , Humanos , Aptâmeros de Nucleotídeos/química , Células Endoteliais/metabolismo , Barreira Hematoencefálica/metabolismo , Sistemas Microfisiológicos , Técnica de Seleção de Aptâmeros/métodos , Ligantes
18.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901700

RESUMO

Cancer-associated fibroblasts (CAFs) contribute to tumor progression, and microRNAs (miRs) play an important role in regulating the tumor-promoting properties of CAFs. The objectives of this study were to clarify the specific miR expression profile in CAFs of hepatocellular carcinoma (HCC) and identify its target gene signatures. Small-RNA-sequencing data were generated from nine pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively. Bioinformatic analyses were performed to identify the HCC-CAF-specific miR expression profile and the target gene signatures of the deregulated miRs in CAFs. Clinical and immunological implications of the target gene signatures were evaluated in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA_LIHC) database using Cox regression and TIMER analysis. The expressions of hsa-miR-101-3p and hsa-miR-490-3p were significantly downregulated in HCC-CAFs. Their expression in HCC tissue gradually decreased as HCC stage progressed in the clinical staging analysis. Bioinformatic network analysis using miRWalks, miRDB, and miRTarBase databases pointed to TGFBR1 as a common target gene of hsa-miR-101-3p and hsa-miR-490-3p. TGFBR1 expression was negatively correlated with miR-101-3p and miR-490-3p expression in HCC tissues and was also decreased by ectopic miR-101-3p and miR-490-3p expression. HCC patients with TGFBR1 overexpression and downregulated hsa-miR-101-3p and hsa-miR-490-3p demonstrated a significantly poorer prognosis in TCGA_LIHC. TGFBR1 expression was positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages in a TIMER analysis. In conclusion, hsa-miR-101-3p and hsa-miR-490-3p were substantially downregulated miRs in CAFs of HCC, and their common target gene was TGFBR1. The downregulation of hsa-miR-101-3p and hsa-miR-490-3p, as well as high TGFBR1 expression, was associated with poor clinical outcome in HCC patients. In addition, TGFBR1 expression was correlated with the infiltration of immunosuppressive immune cells.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Fibroblastos Associados a Câncer/metabolismo , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
19.
Dev Dyn ; 252(6): 761-769, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36825302

RESUMO

BACKGROUND: The Bone morphogenetic protein 4 (BMP4) precursor protein is cleaved at two sites to generate an active ligand and inactive prodomain. The ligand and prodomain form a noncovalent complex following the first cleavage, but dissociate after the second cleavage. Transient formation of this complex is essential to generate a stable ligand. Fibrillins (FBNs) bind to the prodomains of BMPs, and can regulate the activity of some ligands. Whether FBNs regulate BMP4 activity is unknown. RESULTS: Mice heterozygous for a null allele of Bmp4 showed incompletely penetrant kidney defects and females showed increased mortality between postnatal day 6 and 8. Removal of one copy of Fbn1 did not rescue or enhance kidney defects or lethality. The lungs of Fbn1+/- females had enlarged airspaces that were unchanged in Bmp4+/- ;Fbn1+/- mice. Additionally, removal of one or both alleles of Fbn1 had no effect on steady state levels of BMP4 ligand or on BMP activity in postnatal lungs. CONCLUSIONS: These findings do not support the hypothesis that FBN1 plays a role in promoting BMP4 ligand stability or signaling, nor do they support the alternative hypothesis that FBN1 sequesters BMP4 in a latent form, as is the case for other BMP family members.


Assuntos
Proteínas Morfogenéticas Ósseas , Rim , Feminino , Camundongos , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Ligantes , Proteínas Morfogenéticas Ósseas/metabolismo , Alelos , Rim/metabolismo , Proteína Morfogenética Óssea 7 , Proteína Morfogenética Óssea 2
20.
Small ; 19(21): e2300250, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828790

RESUMO

Bioelectrodes have been developed to efficiently mediate electrical signals of biological systems as stimulators and recording devices. Recently, conductive hydrogels have garnered great attention as emerging materials for bioelectrode applications because they can permit intimate/conformal contact with living tissues and tissue-like softness. However, administration and control over the in vivo lifetime of bioelectrodes remain challenges. Here, injectable conductive hydrogels (ICHs) with tunable degradability as implantable bioelectrodes are developed. ICHs were constructed via thiol-ene reactions using poly(ethylene glycol)-tetrathiol and thiol-functionalized reduced graphene oxide with either hydrolyzable poly(ethylene glycol)-diacrylate or stable poly(ethylene glycol)-dimaleimide, the resultant hydrogels of which are degradable and nondegradable, respectively. The ICH electrodes had conductivities of 21-22 mS cm-1 and Young's moduli of 15-17 kPa, and showed excellent cell and tissue compatibility. The hydrolyzable conductive hydrogels disappeared 3 days after in vivo administration, while the stable conductive hydrogels maintained their shapes for up to 7 days. Our proof-of-concept studies reveal that electromyography signals with significantly improved sensitivity from rats could be obtained from the injected ICH electrodes compared to skin electrodes and injected nonconductive hydrogel electrodes. The ICHs, offering convenience in use, controllable degradation and excellent signal transmission, will have great potential to develop various bioelectronics devices.


Assuntos
Hidrogéis , Polietilenoglicóis , Ratos , Animais , Próteses e Implantes , Condutividade Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA