Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(5): e0177415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542566

RESUMO

The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour's gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour's glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour's gland contributing to a more complete understanding of the biological functions of this gland in honeybees.


Assuntos
Abelhas/metabolismo , Glândulas Exócrinas/metabolismo , Proteínas de Insetos/metabolismo , Comunicação Animal , Animais , Abelhas/fisiologia , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico/metabolismo , Proteoma/metabolismo , Proteômica , Comportamento Social , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Bacteriol ; 199(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28031282

RESUMO

Siderophore nutrition tests with Caulobacter crescentus strain NA1000 revealed that it utilized a variety of ferric hydroxamate siderophores, including asperchromes, ferrichromes, ferrichrome A, malonichrome, and ferric aerobactin, as well as hemin and hemoglobin. C. crescentus did not transport ferrioxamine B or ferric catecholates. Because it did not use ferric enterobactin, the catecholate aposiderophore was an effective agent for iron deprivation. We determined the kinetics and thermodynamics of [59Fe]apoferrichrome and 59Fe-citrate binding and transport by NA1000. Its affinity and uptake rate for ferrichrome (equilibrium dissociation constant [Kd ], 1 nM; Michaelis-Menten constant [KM ], 0.1 nM; Vmax, 19 pMol/109 cells/min) were similar to those of Escherichia coli FhuA. Transport properties for 59Fe-citrate were similar to those of E. coli FecA (KM , 5.3 nM; Vmax, 29 pMol/109 cells/min). Bioinformatic analyses implicated Fur-regulated loci 00028, 00138, 02277, and 03023 as TonB-dependent transporters (TBDT) that participate in iron acquisition. We resolved TBDT with elevated expression under high- or low-iron conditions by SDS-PAGE of sodium sarcosinate cell envelope extracts, excised bands of interest, and analyzed them by mass spectrometry. These data identified five TBDT: three were overexpressed during iron deficiency (00028, 02277, and 03023), and 2 were overexpressed during iron repletion (00210 and 01196). CLUSTALW analyses revealed homology of putative TBDT 02277 to Escherichia coli FepA and BtuB. A Δ02277 mutant did not transport hemin or hemoglobin in nutrition tests, leading us to designate the 02277 structural gene as hutA (for heme/hemoglobin utilization).IMPORTANCE The physiological roles of the 62 putative TBDT of C. crescentus are mostly unknown, as are their evolutionary relationships to TBDT of other bacteria. We biochemically studied the iron uptake systems of C. crescentus, identified potential iron transporters, and clarified the phylogenetic relationships among its numerous TBDT. Our findings identified the first outer membrane protein involved in iron acquisition by C. crescentus, its heme/hemoglobin transporter (HutA).


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caulobacter crescentus/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Ferro/metabolismo , Radioisótopos de Ferro , Proteínas de Membrana/genética , Sideróforos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA