Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(7): e0011879, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991038

RESUMO

BACKGROUND: Plasmodium vivax is the most predominant malaria species in Latin America, constituting 71.5% of malaria cases in 2021. With several countries aiming for malaria elimination, it is crucial to prioritize effectiveness of national control programs by optimizing the utilization of available resources and strategically implementing necessary changes. To support this, there is a need for innovative approaches such as genomic surveillance tools that can investigate changes in transmission intensity, imported cases and sources of reintroduction, and can detect molecular markers associated with drug resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we apply a modified highly-multiplexed deep sequencing assay: Pv AmpliSeq v2 Peru. The tool targets a newly developed 41-SNP Peru barcode for parasite population analysis within Peru, the 33-SNP vivaxGEN-geo panel for country-level classification, and 11 putative drug resistance genes. It was applied to 230 samples from the Peruvian Amazon (2007-2020), generating baseline surveillance data. We observed a heterogenous P. vivax population with high diversity and gene flow in peri-urban areas of Maynas province (Loreto region) with a temporal drift using all SNPs detected by the assay (nSNP = 2909). In comparison, in an indigenous isolated area, the parasite population was genetically differentiated (FST = 0.07-0.09) with moderate diversity and high relatedness between isolates in the community. In a remote border community, a clonal P. vivax cluster was identified, with distinct haplotypes in drug resistant genes and ama1, more similar to Brazilian isolates, likely representing an introduction of P. vivax from Brazil at that time. To test its applicability for Latin America, we evaluated the SNP Peru barcode in P. vivax genomes from the region and demonstrated the capacity to capture local population clustering at within-country level. CONCLUSIONS/SIGNIFICANCE: Together this data shows that P. vivax transmission is heterogeneous in different settings within the Peruvian Amazon. Genetic analysis is a key component for regional malaria control, offering valuable insights that should be incorporated into routine surveillance.


Assuntos
Malária Vivax , Plasmodium vivax , Polimorfismo de Nucleotídeo Único , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/classificação , Peru/epidemiologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Humanos , Resistência a Medicamentos/genética , Genoma de Protozoário , Sequenciamento de Nucleotídeos em Larga Escala , Monitoramento Epidemiológico , Genômica
2.
Bio Protoc ; 13(5): e4621, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36908639

RESUMO

Malaria molecular surveillance has great potential to support national malaria control programs (NMCPs), informing policy for its control and elimination. Here, we present a new three-day workflow for targeted resequencing of markers in 13 resistance-associated genes, histidine rich protein 2 and 3 (hrp2&3), a country (Peru)-specific 28 SNP-barcode for population genetic analysis, and apical membrane antigen 1 (ama1), using Illumina short-read sequencing technology. The assay applies a multiplex PCR approach to amplify all genomic regions of interest in a rapid and easily standardizable procedure and allows simultaneous amplification of a high number of targets at once, therefore having great potential for implementation into routine surveillance practice by NMCPs. The assay can be performed on routinely collected filter paper blood spots and can be easily adapted to different regions to investigate either regional trends or in-country epidemiological changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA