Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372601

RESUMO

Meat is an important part of the food pyramid in Mexico, to such an extent that it is included in the basic food basket. In recent years, there has been great interest in the application of so-called emerging technologies, such as high-intensity ultrasound (HIU), to modify the characteristics of meat and meat products. The advantages of the HIU in meat such as pH, increased water-holding capacity, and antimicrobial activity are well documented and conclusive. However, in terms of meat tenderization, the results are confusing and contradictory, mainly when they focus on three HIU parameters: acoustic intensity, frequency, and application time. This study explores via a texturometer the effect of HIU-generated acoustic cavitation and ultrasonoporation in beef (m. Longissimus dorsi). Loin-steak was ultrasonicated with the following parameters: time tHIU = 30 min/each side; frequency fHIU = 37 kHz; acoustic intensity IHIU = ~6, 7, 16, 28, and 90 W/cm2. The results showed that acoustic cavitation has a chaotic effect on the loin-steak surface and thickness of the rib-eye due to Bjerknes force, generating shear stress waves, and acoustic radiation transmittance via the internal structure of the meat and the modification of the myofibrils, in addition to the collateral effect in which the collagen and pH generated ultrasonoporation. This means that HIU can be beneficial for the tenderization of meat.

2.
Foods ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741933

RESUMO

The effect of ultrasound-treated fresh raw milk upon yield, physicochemical and microbiological quality of Oaxaca cheese was evaluated under a factorial design. The ultrasound frequencies tested were 25 and 45 kHz, during 15 or 30 min. The cheeses made with the ultrasonicated milk (30 min, high-intensity ultrasound, HIU) had greater luminosity without significant changes in hue or chroma, as compared to the controls with no HIU. The yield improved significantly (by up to 2.8 kg/100 L of milk), as the ultrasound treatment time increased. Such cheese yield is attributable to the higher protein content, which was up to 1.5% higher, after sonication. Long-treatment time (30 min) at 25 kHz significantly lowered mesophilic bacteria counts down to limits allowed by current regulations and favors the growth of lactic acid bacteria (LAB) while lowering mold and yeast counts. The absence of E. coli and Salmonella spp. and the decrease in S. aureus counts in Oaxaca cheese were attributed to the mixing of the paste with hot water, inherent to the traditional elaboration process, and to the antagonistic effect of the ultrasound-triggered increased LAB on pathogenic bacteria. Since the artisanal elaboration of Oaxaca cheese does not comply with the current Mexican regulations regarding mesophiles, ultrasound could be a suitable technology to protect its genuine elaboration process with raw milk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA