RESUMO
Time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (ECD) are widely used to determine absolute configurations (ACs) of chiral molecules. Two very popular DFT exchange-correlation functionals, one hybrid (B3LYP) and one long-range corrected (CAM-B3LYP), along with a hierarchical sequence of basis sets were investigated, and the ECD spectra predicted for eight alkenes and compared to gas-phase experimental spectra. Little variation in predicted ECD spectra was found with the basis set size enlargement, but the sensitivity to the functional is greater. Good agreement was obtained only with the CAM-B3LYP functional, leading to the conclusion that TDDFT calculations of ECD spectra can routinely provide reliable ACs if and only if an appropriate functional is used. For camphene, twistene, syn-(E)-bisfenchylidene, and phyllocladene, solvent effects were estimated.
RESUMO
Recently, segmented all-electron contracted double, triple, quadruple, quintuple, and sextuple zeta valence plus polarization function (XZP, X = D, T, Q, 5, and 6) basis sets for the elements from H to Ar were constructed for use in conjunction with nonrelativistic and Douglas-Kroll-Hess Hamiltonians. In this work, in order to obtain a better description of some molecular properties, the XZP sets for the second-row elements were augmented with high-exponent d "inner polarization functions," which were optimized in the molecular environment at the second-order Møller-Plesset level. At the coupled cluster level of theory, the inclusion of tight d functions for these elements was found to be essential to improve the agreement between theoretical and experimental zero-point vibrational energies (ZPVEs) and atomization energies. For all of the molecules studied, the ZPVE errors were always smaller than 0.5 %. The atomization energies were also improved by applying corrections due to core/valence correlation and atomic spin-orbit effects. This led to estimates for the atomization energies of various compounds in the gaseous phase. The largest error (1.2 kcal mol(-1)) was found for SiH(4).
Assuntos
Elétrons , Elementos Químicos , Modelos Moleculares , Vibração , Cloreto de Sódio/química , Dióxido de Enxofre/química , TermodinâmicaRESUMO
Density function theory calculations of frequency dependent optical rotations ([alpha]omega) for 30 rigid chiral molecules are reported. Calculations have been carried out at the sodium D line frequency, using the augmented double zeta valence quality plus polarization functions (ADZP) basis set and the BP86 nonhybrid and B3LYP hybrid functionals. Gauge-invariant atomic orbitals were used to guarantee origin-independent values of [alpha]D. Comparison between corresponding results obtained with nonhybrid and hybrid functionals as well as with theoretical optical rotations reported in the literature is done. Excited electronic states of three molecules are also discussed in light of circular dichroism spectra and B3LYP and BP86 calculated excitation energies and rotatory strengths. One verifies that the B3LYP/ADZP results are in better agreement with experiment.