Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochimie ; 225: 81-88, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38762000

RESUMO

The genus Mixcoatlus is composed of three species: Mixcoatlus barbouri, M. browni, and M. melanurus, of which the venom composition of M. melanurus, the most common species of the three, has only recently been described. However, very little is known about the natural history of M. barbouri and M. browni, and the venom composition of these two species has remained thus far unexplored. In this study we characterize the proteomic profiles and the main biochemical and toxic activities of these two venoms. Proteomic data obtained by shotgun analysis of whole venom identified 12 protein families for M. barbouri, and 13 for M. browni. The latter venom was further characterized by using a quantitative 'venomics' protocol, which revealed that it is mainly composed of 51.1 % phospholipases A2 (PLA2), 25.5 % snake venom serine proteases (SVSP), 4.6 % l-amino oxidases (LAO), and 3.6 % snake venom metalloproteases (SVMP), with lower percentages other six protein families. Both venoms contained homologs of the basic and acidic subunits of crotoxin. However, due to limitations in M. barbouri venom availability, we could only characterize the crotoxin-like protein of M. browni venom, which we have named Mixcoatlutoxin. It exhibited a lethal potency in mice like that described for classical rattlesnake crotoxins. These findings expand knowledge on the distribution of crotoxin-like heterodimeric proteins in viper snake species. Further investigation of the bioactivities of the venom of M. barbouri, on the other hand, remains necessary.


Assuntos
Crotoxina , Animais , Camundongos , Crotoxina/química , Crotoxina/genética , Fosfolipases A2/metabolismo , Fosfolipases A2/genética , Fosfolipases A2/química , Proteômica/métodos , México , Especificidade da Espécie , Venenos de Crotalídeos/química
2.
Toxicon ; 244: 107756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740096

RESUMO

Despite a recent surge in high-throughput venom research that has enabled many species to be studied, some snake venoms remain understudied. The long-tailed rattlesnakes (Crotalus ericsmithi, C. lannomi, and C. stejnegeri) are one group where such research lags, largely owing to the rarity of these snakes and the hazardous areas, ripe with drug (marijuana and opium) production, they inhabit in Mexico. To fill this knowledge gap, we used multiple functional assays to examine the coagulotoxic (including across different plasma types), neurotoxic, and myotoxic activity of the venom of the long-tailed rattlesnakes. All crude venoms were shown to be potently anticoagulant on human plasma, which we discovered was not due to the destruction of fibrinogen, except for C. stejnegeri displaying minor fibrinogen destruction activity. All venoms exhibited anticoagulant activity on rat, avian, and amphibian plasmas, with C. ericsmithi being the most potent. We determined the mechanism of anticoagulant activity by C. ericsmithi and C. lannomi venoms to be phospholipid destruction and inhibition of multiple coagulation factors, leading to a net disruption of the clotting cascade. In the chick biventer assay, C. ericsmithi and C. lannomi did not exhibit neurotoxic activity but displayed potential weak myotoxic activity. BIRMEX® (Faboterápico Polivalente Antiviperino) antivenom was not effective in neutralising this venom effect. Overall, this study provides an in-depth investigation of venom function of understudied long-tailed rattlesnakes and provides a springboard for future venom and ecology research on the group.


Assuntos
Anticoagulantes , Venenos de Crotalídeos , Crotalus , Animais , Venenos de Crotalídeos/toxicidade , Humanos , Anticoagulantes/farmacologia , Cannabis/química , Ratos , Coagulação Sanguínea/efeitos dos fármacos , México
3.
Syst Biol, in press, syae018, mai, 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5383

RESUMO

Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.

4.
Clin Ophthalmol ; 16: 3213-3224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199805

RESUMO

Purpose: To evaluate the reproducibility of magnitude of postoperative IOL rotation following implantation of a toric intraocular lens (IOL) with modified haptics, in comparison with a Proof-of-Concept (POC) study of prototype IOLs featuring the same haptic design. Patients and Methods: A post-market, prospective, multicenter, single-arm, open-label clinical study was conducted. TECNIS Toric II IOL (Johnson & Johnson Vision, Irvine, CA, USA, Models ZCU150 to 600) were implanted in 125 subjects and evaluated at 1-day and 1-week postoperatively. An objective photographic method was used to determine postoperative IOL rotation. Uncorrected distance visual acuity (UCDVA), postoperative astigmatism, and surgeon satisfaction were also assessed. Rotation data were compared to the POC study in which two prototype non-toric monofocal IOLs, one with the same haptic design as Model ZCU, were studied. Results: Mean absolute rotation was 0.82° ± 1.0° and 0.84° ± 0.92°at 1-day and 1-week visits, respectively. The percentage of eyes with ≤5° of absolute rotation was 98.9% and 99.5% at the 1-day and 1-week visits, respectively. The magnitude of rotation was similar to the POC study prototype IOLs. At 1-week, mean monocular UCDVA was 0.026 ± 0.135 (~20/21) logMAR and mean residual manifest refractive cylinder was 0.30 D ± 0.35 D. The mean signed axis difference (postoperative minus operative) of the TECNIS Toric II IOL was 0.23° ± 1.27° at 1-day and -0.07° ± 1.25° at 1-week, indicating a clockwise drift. At 1-week, surgeons were very satisfied or satisfied with overall clinical outcomes and rotational stability in 98% of implanted eyes. Conclusion: The TECNIS Toric II IOL, with frosted, squared haptics, demonstrated low magnitude of postoperative IOL rotation, excellent uncorrected distance vision, and minimal residual astigmatism. The POC study design was supported, demonstrating that prototype non-toric monofocal IOLs can predict clinical performance of toric IOLs with the same haptic design.

5.
Biochimie ; 202: 226-236, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36057372

RESUMO

The most enigmatic group of rattlesnakes is the long-tailed rattlesnake group, consisting of three species: Crotalus ericsmithi, Crotalus lannomi and Crotalus stejnegeri. These species have been the least studied rattlesnakes in all aspects, and no study on the characterization of their venoms has been carried out to date. Our main objective was to investigate the proteomic composition, as well as some of the biochemical and toxic activities of these venoms, and their neutralization by commercial antivenom. The venom proteome of C. ericsmithi mainly contains metalloproteinases (SVMP; 49.3%), phospholipases A2 (PLA2; 26.2%), disintegrins (Dis; 12.6%), and snake venom serine proteases (SVSP; 6.8%), while C. lannomi venom mainly consists of SVMP (47.1%), PLA2 (19.3%), Dis (18.9%), SVSP (6%) and l-amino acid oxidase (LAAO; 2.6%). For these venoms high lethality was recorded in mice, the most potent being that of C. lannomi (LD50 of 0.99 µg/g body weight), followed by C. ericsmithi (1.30 µg/g) and finally C. stejnegeri (1.79 µg/g). The antivenoms Antivipmyn® from SILANES and Fabotherapic polyvalent antiviperin® from BIRMEX neutralized the lethal activity of the three venoms. Although this group of snakes is phylogenetically related to the C. viridis group, no neurotoxic components (crotoxin or crotoxin-like proteins) common in rattlesnakes were found in their venoms. This study expands current knowledge on the venoms of understudied snake species of the Mexican herpetofauna.


Assuntos
Crotalus , Crotoxina , Animais , Camundongos , Peçonhas , Proteômica , Proteoma
6.
Biochimie ; 192: 111-124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34656669

RESUMO

Intraspecific variation in snake venoms has been widely documented worldwide. However, there are few studies on this subject in Mexico. Venom characterization studies provide important data used to predict clinical syndromes, to evaluate the efficacy of antivenoms and, in some cases, to improve immunogenic mixtures in the production of antivenoms. In the present work, we evaluated the intraspecific venom variation of Crotalus basiliscus, a rattlesnake of medical importance and whose venom is used in the immunization of horses to produce one of the Mexican antivenoms. Our results demonstrate that there is variation in biological and biochemical activities among adult venoms and that there is an ontogenetic change from juvenile to adult venoms. Juvenile venoms were more lethal and had higher percentages of crotamine and crotoxin, while adult venoms had higher percentages of snake venom metalloproteases (SVMPs). Additionally, we documented crotoxin-like PLA2 variation in which specimens from Zacatecas, Sinaloa and Michoacán (except 1) lacked the neurotoxin, while the rest of the venoms had it. Finally, we evaluated the efficacy of three lots of Birmex antivenom and all three were able to neutralize the lethality of four representative venoms but were not able to neutralize crotamine. We also observed significant differences in the LD50 values neutralized per vial among the different lots. Based on these results, we recommend including venoms containing crotamine in the production of antivenom for a better immunogenic mixture and to improve the homogeneity of lots.


Assuntos
Antivenenos/química , Crotalus , Crotoxina/química , Animais , Humanos , México , Camundongos , Especificidade da Espécie
7.
Proc Natl Acad Sci U S A, v. 118, n. 17, e2015579118, abr. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4362

RESUMO

The role of natural selection in the evolution of trait complex-ity can be characterized by testing hypothesized links betweencomplex forms and their functions across species. Predatory ven-oms are composed of multiple proteins that collectively function toincapacitate prey. Venom complexity fluctuates over evolutionarytimescales, with apparent increases and decreases in complexity,and yet the causes of this variation are unclear. We tested alterna-tive hypotheses linking venom complexity and ecological sourcesof selection from diet in the largest clade of front-fanged ven-omous snakes in North America: the rattlesnakes, copperheads,cantils, and cottonmouths. We generated independent transcrip-tomic and proteomic measures of venom complexity and collatedseveral natural history studies to quantify dietary variation. Wethen constructed genome-scale phylogenies for these snakes forcomparative analyses. Strikingly, prey phylogenetic diversity wasmore strongly correlated to venom complexity than was overallprey species diversity, specifically implicating prey species’ diver-gence, rather than the number of lineages alone, in the evolutionof complexity. Prey phylogenetic diversity further predicted tran-scriptomic complexity of three of the four largest gene familiesin viper venom, showing that complexity evolution is a concertedresponse among many independent gene families. We suggest thatthe phylogenetic diversity of prey measures functionally relevantdivergence in the targets of venom, a claim supported by sequencediversity in the coagulation cascade targets of venom. Our resultssupport the general concept that the diversity of species in an eco-logical community is more important than their overall number indetermining evolutionary patterns in predator trait complexity.

8.
Zootaxa ; 4712(3): zootaxa.4712.3.2, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32230674

RESUMO

Based on morphological data collected from treefrogs related to Sarcohyla hazelae, we describe a new species of the genus Sarcohyla from the cloud forest of the Sierra Madre del Sur of Guerrero, Mexico. We compare physical charactersitics of this new species to its closest relatives within the genus Sarcohyla, including dorsal and ventral coloration, head shape, tympanum distinctiveness, morphometrics and the condition of the tubercles on hands and feet. We analyze accoustic data from the advertisement call of males of the new species. We discuss the relationship of the species described herein with several of its cogeners, plus we resurrect the Sarcohyla hazelae group for these frogs. We describe habitat and distribution species related to Sarcohyla hazelae and also comment on the conservation priorities of these frogs.


Assuntos
Anuros , Florestas , Animais , Ecossistema , , Masculino , México , Filogenia
9.
J Proteomics ; 192: 196-207, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205237

RESUMO

Venoms of the three species of Ophryacus (O. sphenophrys, O. smaragdinus, and O. undulatus), a viperid genus endemic to Mexico, were analyzed for the first time in the present work. The three venoms lacked procoagulant activity on human plasma, but induced hemorrhage and were highly lethal to mice. These venoms also displayed proteolytic and phospholipase A2 activities in vitro. The venom of O. sphenophrys was the most lethal and caused hind-limb paralysis in mice. Proteomic profiling of O. sphenophrys venom showed a predominance of metalloproteinase (34.9%), phospholipase A2 (24.8%) and serine protease (17.1%) in its composition. Strikingly, within its PLA2 components, 12.9% corresponded to a Crotoxin-like heterodimer, here named Sphenotoxin, which was not found in the other two species of Ophryacus. Sphenotoxin, like Crotoxin, is composed of non-covalently bound A and B subunits. Partial amino acid sequence was obtained for Sphenotoxin B and was similar (78-89%) to other subunits described. The mouse i.v. LD50 of Sphenotoxin at 1:1 M radio was 0.16 µg/g. Also, like Crotoxin, Sphenotoxin induced a potent neuromuscular blockade in the phrenic nerve-diaphragm preparation. Ophryacus is the fifth genus and O. sphenophrys the third non-rattlesnake species shown to contain a novel Crotoxin-like heterodimeric ß-neurotoxin. BIOLOGICAL SIGNIFICANCE: Ophryacus is an endemic genus of semi-arboreal pitvipers from Mexico that includes three species with restricted distributions. Little is known about the natural history of these species and nothing is known about the properties of their venoms. Research on these species' venoms could generate relevant information regarding venom composition of Mexican pitvipers. Additionally, research into the presence of neurotoxic Crotoxin-like molecules outside of rattlesnakes (genera Crotalus and Sistrurus) has identified this molecule in several new genera. Knowing which genera and species possess neurotoxic components is important to fully understand the repercussions of snakebites, the interaction with prey and predators, and the origin, evolution, and phylogenetic distribution of Crotoxin-like molecules during the evolutionary history of pitvipers. Our study expands current knowledge regarding venom's compositions and function from Mexican pitvipers, providing a comparative venom characterization of major activities in the three Ophryacus species. Additionally, the discovery and characterization of a novel Crotoxin-like molecule, here named Sphenotoxin, in O. sphenophrys, and the detailed protein composition of O. sphenophrys venom supports the hypotheses that Crotoxin-like -ß-neurotoxins are more widespread than initially thought.


Assuntos
Crotalinae/metabolismo , Crotoxina , Neurotoxinas , Multimerização Proteica , Animais , Crotalinae/classificação , Crotoxina/química , Crotoxina/metabolismo , Crotoxina/toxicidade , Humanos , México , Camundongos , Neurotoxinas/química , Neurotoxinas/toxicidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA