Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 8(1)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32121666

RESUMO

The safety and genetic stability of V4020, a novel Venezuelan Equine Encephalitis Virus (VEEV) vaccine based on the investigational VEEV TC-83 strain, was evaluated in mice. V4020 was generated from infectious DNA, contains a stabilizing mutation in the E2-120 glycoprotein, and includes rearrangement of structural genes. After intracranial inoculation (IC), replication of V4020 was more attenuated than TC-83, as documented by low clinical scores, inflammation, viral load in brain, and earlier viral clearance. During the first 9 days post-inoculation (DPI), genes involved in inflammation, cytokine signaling, adaptive immune responses, and apoptosis were upregulated in both groups. However, the magnitude of upregulation was greater in TC-83 than V4020 mice, and this pattern persisted till 13 DPI, while V4020 gene expression profiles declined to mock-infected levels. In addition, genetic markers of macrophages, DCs, and microglia were strongly upregulated in TC-83 mice. During five serial passages in the brain, less severe clinical manifestations and a lower viral load were observed in V4020 mice and all animals survived. In contrast, 13.3% of mice met euthanasia criteria during the passages in TC-83 group. At 2 DPI, RNA-Seq analysis of brain tissues revealed that V4020 mice had lower rates of mutations throughout five passages. A higher synonymous mutation ratio was observed in the nsP4 (RdRP) gene of TC-83 compared to V4020 mice. At 2 DPI, both viruses induced different expression profiles of host genes involved in neuro-regeneration. Taken together, these results provide evidence for the improved safety and genetic stability of the experimental V4020 VEEV vaccine in a murine model.

2.
Vaccine ; 37(25): 3317-3325, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31072736

RESUMO

Novel live-attenuated V4020 vaccine was prepared for Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The genome of V4020 virus was rearranged, with the capsid gene expressed using a duplicate subgenomic promoter downstream from the glycoprotein genes. V4020 also included both attenuating mutations from the TC83 VEEV vaccine secured by mutagenesis to prevent reversion mutations. The full-length infectious RNA of V4020 vaccine virus was expressed from pMG4020 plasmid downstream from the CMV promoter and launched replication of live-attenuated V4020 in vitro or in vivo. BALB/c mice vaccinated with a single dose of V4020 virus or with pMG4020 plasmid had no adverse reactions to vaccinations and developed high titers of neutralizing antibodies. After challenge with the wild type VEEV, vaccinated mice survived with no morbidity, while all unvaccinated controls succumbed to lethal infection. Intracranial injections in mice showed attenuated replication of V4020 vaccine virus as compared to the TC83. We conclude that V4020 vaccine has safety advantage over TC83, while provides equivalent protection in a mouse VEEV challenge model.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/prevenção & controle , Genoma Viral , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , DNA Viral/genética , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/imunologia , Cavalos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Plasmídeos/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA