Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Int J Biol Macromol ; : 136084, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353525

RESUMO

Sparassis latifolia polysaccharides (SLPs) have immunomodulatory activity and lead excretion ability, but its regulatory mechanism through the gut microbiota-spleen axis has not been elucidated. In this study, spleen metabolomics and intestinal flora sequencing were combined to explore the regulatory mechanism of SLPs on spleen immune function in lead-exposed mice. The results showed that SLPs effectively reduced spleen lead content, alleviated spleen enlargement and oxidative stress. SLPs changed glycerophospholipid metabolism, increased lysophosphatidylcholine content and inhibited the expression of G2A, ERK2 and NF-kB genes and the phosphorylation of ERK2 and NF-kB in lead-exposed mice. Furthermore, SLPs inhibited potential intestinal pathogens such as Clostridium_sensu_stricto_1, Lachnospiraceae, Oscillospiraceae and Alistipes_indistinctus, which were positively correlated with phosphatidylethanolamine metabolites. In addition, SLPs reduced the spleen tissue damage of lead-exposed mice by co-housing, and reduced the relative abundance of Clostridium_sensu_stricto_1, Prevotellaceae, and RF39, which were positively correlated with spleen enlargement, and inhibited the expression of ERK2/NF-κB signaling pathway-related genes such as G2A, ERK2 and Fas. In summary, SLPs can reduce the relative abundance of pathogenic microorganisms by regulating the structure of intestinal flora, regulate the glycerophospholipid metabolism of spleen in lead-exposed mice, alleviate oxidative damage and inflammatory response, and restore spleen immune function.

2.
Eur J Med Res ; 29(1): 456, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261917

RESUMO

Ovarian cancer is an extremely malignant gynaecological tumour with a poor patient prognosis and is often associated with chemoresistance. Thus, exploring new therapeutic approaches to improving tumour chemosensitivity is important. The expression of transcription elongation factor B polypeptide 2 (TCEB2) gene is reportedly upregulated in ovarian cancer tumour tissues with acquired resistance, but the specific mechanism involved in tumour resistance remains unclear. In this study, we found that TCEB2 was abnormally highly expressed in cisplatin-resistant tumour tissues and cells. TCEB2 silencing also inhibited the growth and glycolysis of SKOV-3/cisplatin (DDP) and A2780/DDP cells. We further incubated human umbilical vein endothelial cells (HUVECs) with culture supernatants from cisplatin-resistant cells having TCEB2 knockdown. Results revealed that the migration, invasion, and angiogenesis of HUVECs were significantly inhibited. Online bioinformatics analysis revealed that the hypoxia-inducible factor-1A (HIF-1A) protein may bind to TCEB2, and TCEB2 silencing inhibited SKOV-3/DDP cell growth and glycolysis by downregulating HIF1A expression. Similarly, TCEB2 promoted HUVEC migration, invasion, and angiogenesis by upregulating HIF1A expression. In vivo experiments showed that TCEB2 silencing enhanced the sensitivity of ovarian cancer nude mice to cisplatin and that TCEB2 knockdown inhibited the glycolysis and angiogenesis of tumour cells. Our findings can serve as a reference for treating chemoresistant ovarian cancer.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neovascularização Patológica , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Camundongos Nus , Células Endoteliais da Veia Umbilical Humana/metabolismo , Movimento Celular , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Angiogênese
3.
Biomed Pharmacother ; 179: 117422, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276399

RESUMO

Dysfunction of the Nav1.5, Cav1.2, and Kv channels could interfere with the AP and result in arrhythmias and even heart failure. We herein present a novel library of nuciferine analogs that target ion channels for the treatment of arrhythmias. Patch clamp measurements of ventricular myocytes revealed that 6a dramatically blocked both the INa and ICa without altering the currentvoltage relationship (including the activation potential and peak potential), accelerated the inactivation of Nav and Cav channels and delayed the resurrection of these channels after inactivation. Additionally, 6a significantly decreased the APA and RMP without affecting the APD30 or APD50. The IC50 values of 6a against Nav1.5 and Cav1.2 were 4.98 µM and 4.62 µM, respectively. Furthermore, 6a (10 µM) blocked IKs, IK1, and Ito with values of 17.01 %±2.54 %, 9.09 %±2.78 %, and 11.15 %±3.52 %, respectively. Surprisingly, 6a weakly inhibited hERG channels, suggesting a low risk of proarrhythmia. The cytotoxicity evaluation of 6a with the H9c2 cell line indicated that this compound was noncytotoxic. In vivo studies suggested that these novel nuciferine analogs could shorten the time of arrhythmia continuum induced by BaCl2 and normalize the HR, QRS, QT and QTc interval and the R wave amplitude. Moreover, 6a dose-dependently affected aconitine-induced arrhythmias and notably improved the cumulative dosage of aconitine required to evoke VP, VT, VF and CA in rats with aconitine-induced arrhythmia. In conclusion, nuciferine analogs could be promising ion channel blockers that could be further developed into antiarrhythmic agents.


Assuntos
Potenciais de Ação , Arritmias Cardíacas , Miócitos Cardíacos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Masculino , Antiarrítmicos/farmacologia , Aporfinas/farmacologia , Humanos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Técnicas de Patch-Clamp
4.
J Am Chem Soc ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325854

RESUMO

The strained silanone 2 was obtained by the reaction of disilacyclobutene 1 with N2O. Silanone 2 exhibited unprecedented thermal stability in both the solid state and solution. DFT calculations on 2 revealed that the highly polarized Si═O double bond is effectively stabilized by its electron delocalization with the unsaturated Si2C2 ring. Treatment of 2 with 1,3,4,5-tetramethylimidazolin-2-ylidene yielded the first Lewis base-stabilized disilacyclobutadiene 3 via a 1,3-boryl migration. Reaction of 2 with HCCH and Me3SiN3 resulted in the addition of C-H and Si-N bonds to the Si═O double bond. Interestingly, irradiation of 2 at rt yielded oxosilanes 7A and 7B in C6D6 and n-hexane, respectively, via the 1,2-boryl migration and ring expansion, whereas photolysis at -60 °C led to the formation of cyclic alkenyl silylene 8.

5.
Biomedicines ; 12(9)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39335660

RESUMO

Background: The accumulation of diverse molecular and cytogenetic variations contributes to the heterogeneity of acute myeloid leukemia (AML), a cluster of hematologic malignancies that necessitates enhanced risk evaluation for prognostic prediction and therapeutic guidance. The ubiquitin-proteasome system plays a crucial role in AML; however, the specific contributions of 49 core proteasome family members (PSMs) in this context remain largely unexplored. Methods: The expression and survival significance of 49 PSMs in AML were evaluated using the data from BeatAML2.0, TCGA, and the GEO database, mainly through the K-M plots, differential genes enrichment analysis, and candidate compounds screening via R language and statistical software. Results: we employed LASSO and Cox regression analyses and developed a model comprising three PSMs (PSMB8, PSMG1, and PSMG4) aimed at predicting OS in adult AML patients, utilizing expression profiles from the BeatAML2.0 training datasets. Patients with higher risk scores were predominantly found in the AML-M2 subtype, exhibited poorer ELN stratification, showed no complete remission following induction therapies, and had a higher mortality status. Consistently, significantly worse OS was observed in high-risk patients across both the training and three validation datasets, underscoring the robust predictive capability of the three-PSMs model for AML outcomes. This model elucidated the distinct genetic abnormalities landscape between high- and low-risk groups and enhanced the ELN risk stratification system. Ultimately, the three-PSMs risk score captured AML-specific gene expression signatures, providing a molecular basis for selecting potential therapeutic agents. Conclusions: In summary, these findings manifested the significant potential of the PSM model for predicting AML survival and informed treatment strategies.

6.
Acta Pharmacol Sin ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349767

RESUMO

Depressive disorders are a global mental health challenge that is closely linked to inflammation, especially in the post-COVID-19 era. The JAK-STAT pathway, which is primarily associated with inflammatory responses, is not fully characterized in the context of depressive disorders. Recently, a phase 3 retrospective cohort analysis heightened that the marketed JAK inhibitor tofacitinib is beyond immune diseases and has potential for preventing mood disorders. Inspired by these clinical facts, we investigated the role of the JAK-STAT signaling pathway in depression and comprehensively assessed the antidepressant effect of tofacitinib. We found that aberrant activation of the JAK-STAT pathway is highly conserved in the hippocampus of classical depressive mouse models: LPS-induced and chronic social defeat stress (CSDS)-induced depressive mice. Mechanistically, the JAK-STAT pathway mediates proinflammatory cytokine production and microgliosis, leading to synaptic defects in the hippocampus of both depressive models. Remarkably, the JAK inhibitor tofacitinib effectively reverses these phenomena, contributing to its antidepressant effect. These findings indicate that the JAK/STAT pathway could be implicated in depressive disorders, and suggest that the JAK inhibitor tofacitinib has a potential translational implication for preventing mood disorders far beyond its current indications.

7.
Sci Rep ; 14(1): 22186, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333619

RESUMO

In a multicenter case-control investigation, we assessed the efficacy of the Electrooculogram Signal Analysis (EOG-SA) method, which integrates attention-related visual evocation, electrooculography, and nonlinear analysis, for distinguishing between intellectual and developmental disabilities (IDD) and typical development (TD) in children. Analyzing 127 participants (63 IDD, 64 TD), we applied nonlinear dynamics for feature extraction. Results indicated EOG-SA's capability to distinguish IDD, with higher template thresholds and Correlation Dimension values correlating with clinical severity. The template threshold proved a robust indicator, with higher values denoting severe IDD. Discriminative metrics showed areas under the curve of 0.91 (template threshold) and 0.85/0.91 (D2), with sensitivities and specificities of 77.6%/95.9% and 93.5%/71.0%, respectively. EOG-SA emerges as a promising tool, offering interpretable neural biomarkers for early and nuanced diagnosis of IDD.


Assuntos
Atenção , Deficiências do Desenvolvimento , Eletroculografia , Deficiência Intelectual , Humanos , Criança , Masculino , Feminino , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/fisiopatologia , Eletroculografia/métodos , Estudos de Casos e Controles , Atenção/fisiologia , Pré-Escolar , Adolescente , Processamento de Sinais Assistido por Computador
8.
J Am Chem Soc ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319777

RESUMO

Controlled oxidation of NHB-stabilized disilyne (NHB)Si ≡ Si(NHB) (1, NHB = [ArN(CMe)2NAr]B, Ar = 2,6-iPr2C6H3) with one equivalent of trimethylamine N-oxide (Me3N+─O-) in dry n-hexane gave oxo-bridged bis-silepin 2 in high yields. DFT calculations disclosed that silepin 2 is only more stable by 13.4 kcal/mol than the corresponding oxo-bridged bis-silylene intermediate 2' (NHB)Si(µ-O)Si(NHB), and 2 was very likely to be formed by the insertion of the two divalent Si atoms into the pendant aryl rings in bis-silylene intermediate 2'. The two silicon atoms in bis-silepin 2 could undergo formal reductive-elimination of the aryl rings and sequential oxidative-insertion reactions with small molecules and organic substrates. Treatment of 2 with H2O, S8, and P4 at 60 °C yielded compounds 3-5 via reductive-elimination of the aryl rings, followed by the sequential oxidative-addition of these molecules at the two Si(II) centers. Similarly, reactions of 2 with PhSiH3, a diphenylalkyne, pyridines, 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe4), Ph2CO, and thiophene yielded the corresponding polycyclic bis-silanes 6-12 via reductive-elimination and oxidative-addition of C-H, Si-H, C≡C, and aromatic C═C, C-S, and C═N bonds at the two Si atoms. These novel reactions indicated the pronounced bis-silylene reactivity of bis-silepin 2, consistent with the low-energy barrier for the interconversion between 2 and 2', as disclosed by DFT calculations.

9.
Discov Med ; 36(188): 1869-1879, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39327250

RESUMO

BACKGROUND: Susceptibility-weighted imaging (SWI) is a common imaging technique used to identify cerebral microbleeds. Given that spinal cord injury (SCI) often creates an environment that favors ferroptosis, a type of cell death driven by iron, this study aimed to explore the relationship between microbleeds on SWI and ferroptosis, and explore the effect of deferoxamine on SCI. METHODS: Thirty-six rabbits were divided into three groups: sham, SCI, and SCI with deferoxamine (DFO, a ferroptosis inhibitor) treatment (SCI+DFO). Following 48 hours of SCI modeling, the rabbits underwent magnetic resonance imaging (MRI) and SWI examinations. Ferroptosis markers and spinal cord tissue morphology were examined, and the modified Tarlov's score was used to assess neurological function. RESULTS: SWI analysis revealed that rabbits in the SCI group exhibited lower signal intensities and larger microbleed areas compared to the those in the SCI+DFO group (p < 0.05). The SCI+DFO group demonstrated significantly decreased iron and malondialdehyde (MDA) levels, coupled with increased glutathione (GSH) and glutathione peroxidase 4 (GPX4) levels, along with attenuated ferroptosis (p < 0.05). This group also displayed greater Neuronal Nuclei (NeuN) expression, Tarlov's scores, and neurological recovery rates (all p < 0.05). A significant positive correlation was found between the microbleed area and iron content (r = 0.59, p = 0.04), MDA (r = 0.75, p = 0.01), and mitochondrial damage (r = 0.90, p < 0.01). Conversely, a negative correlation was established between the microbleed area and GPX4 levels (r = -0.87, p < 0.01), as well as neurological function recovery (r = -0.62, p = 0.03). CONCLUSION: The extent of microbleeds on SWI following SCI is closely correlated with ferroptosis, and the inhibition of ferroptosis could improve neurologic function. These findings suggest that the area of microbleeds on SWI could potentially serve as a predictive marker for ferroptosis in spinal cord injury.


Assuntos
Desferroxamina , Ferroptose , Imageamento por Ressonância Magnética , Traumatismos da Medula Espinal , Animais , Ferroptose/efeitos dos fármacos , Coelhos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Ferro/metabolismo , Prognóstico , Masculino , Modelos Animais de Doenças , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Medula Espinal/metabolismo
10.
Cancer Med ; 13(15): e70072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108036

RESUMO

BACKGROUND: Our study aims to investigate the mechanisms through which Fc receptor-like A (FCRLA) promotes renal cell carcinoma (RCC) and to examine its significance in relation to tumor immune infiltration. MATERIALS AND METHODS: The correlation between FCRLA and data clinically related to RCC was explored using The Cancer Genome Atlas (TCGA), then validated using Gene Expression Omnibus (GEO) gene chip data. Enrichment and protein-protein interaction (PPI) network analyses were performed for FCRLA and its co-expressed genes. FCRLA was knocked down in RCC cell lines to evaluate its impact on biological behavior. Then the potential downstream regulators of FCRLA were determined by western blotting, and rescue experiments were performed for verification. The relevance between FCRLA and various immune cells was analyzed through GSEA, TIMER, and GEPIA tools. TIDE and ESTIMATE algorithms were used to predict the effect of FCRLA in immunotherapy. RESULTS: Fc receptor-like A was associated with clinical and T stages and could predict the M stage (AUC = 0.692) and 1-3- and 5-year survival rates (AUC = 0.823, 0.834, and 0.862) of RCC patients. Higher expression of FCLRA predicted an unfavorable overall survival (OS) in TCGA-RCC and GSE167573 datasets (p = 0.03, p = 0.04). FCRLA promoted the malignant biological behavior of RCC cells through the pERK1/2/-MMP2 pathway and was associated with tumor immune microenvironment in RCC. CONCLUSION: Fc receptor-like A is positively correlated with poor outcomes in RCC patients and plays an oncogenic role in RCC through the pERK1/2-MMP2 pathway. Patients with RCC might benefit from immunotherapy targeting FCRLA.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Prognóstico , Mapas de Interação de Proteínas , Receptores Fc/genética , Receptores Fc/metabolismo , Microambiente Tumoral/imunologia
11.
Arthroscopy ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154667

RESUMO

PURPOSE: To evaluate the efficacy and safety of intra-articular injection of mesenchymal stem cells (MSCs) versus hyaluronic acid (HA) in the treatment of knee osteoarthritis (KOA). METHODS: Eligible randomized controlled trials (RCTs) were identified through a search of PubMed, Embase, the Cochrane Library, Web of Science, SinoMed, and CNKI databases from inception to March 2024. For meta-analysis, data on clinical outcomes were measured using visual analog scale (VAS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and data on cartilage repair were measured using the Whole-Organ Magnetic Resonance Imaging Score (WORMS); data on safety were evaluated by the incidence of adverse events. Two researchers independently read the included literature, extracted data and evaluated the quality, used the Cochrane risk bias assessment tool for bias risk assessment, and used RevMan5.3 software for meta-analysis. RESULTS: Ten RCTs involving 818 patients with KOA ranging from I to Ⅲ on the Kellgren-Lawrence grading scale were included in this meta-analysis. Meta-analysis results showed that at 12 months, the WOMAC total score (mean difference [MD] = -10.22, 95% confidence interval [CI]: -14.86 to -5.59, P < .0001, Z = 4.32), VAS score (MD = -1.31, 95% CI: -1.90 to -0.73, P < .0001, Z = 4.40); and WORMS score (MD = -26.01, 95% CI: -31.88 to -20.14, P < .001, Z = 8.69) of the MSCs group all decreased significantly (P < .05) compared with the HA control group and reached the minimal clinically important differences. Furthermore, there was no significant difference in the incidence of adverse events (relative risk = 1.54, 95% CI: 0.85-2.79, P = .16, I2 = 0) between the 2 groups (P > .05). CONCLUSIONS: Compared with HA, intra-articular injection of MSCs therapy appears to alleviate joint pain effectively, improving clinical function of KOA patients. These benefits are observed to last for at least 12 months without an increase in adverse events. Due to limited, varied, and lacking minimal clinically important differences results in existing literature, further research is needed. LEVEL OF EVIDENCE: Level I, meta-analysis of Level I studies.

12.
Biomed Pharmacother ; 179: 117324, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216451

RESUMO

Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Neutrófilos , Fenótipo , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/metabolismo , Animais , Senescência Celular , COVID-19/imunologia , Envelhecimento/patologia , Envelhecimento/imunologia , Espécies Reativas de Oxigênio/metabolismo
13.
J Control Release ; 374: 577-589, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208933

RESUMO

Growth factor holds great promise for bone regeneration, and spatiotemporal control of their expressing through site-specific reactions is crucial but challenging for on-demand therapy. In this study, we present the development of a novel unnatural amino acids (UAAs)-triggered therapeutic switch (UATS) system, composed of an orthogonal aminoacyl-tRNA-synthase (aaRS)-tRNA pair and a bone morphogenetic protein 2 (BMP2) gene harboring premature stop codon, which enable in situ and on-demand initiation of the expression of BMP2. The resulting UATS system allowed specifically control of base expressing on the BMP2 mRNA that switched to the BMP2 protein with complete structure and function to facilitate bone regeneration. Our investigations showed that the UATS system exhibits remarkable attributes of rapid, sensitive, reversible, and sustained BMP2 expression both in vitro and in vivo settings. Moreover, the implantation of microencapsulated cells with UATS system is applied to a mouse femur defect model, demonstrating high effciency in controlled expressing of BMP2 protein and substantial repair of bone defect following oral administration of UAAs. Therefore, our findings underscore the great potential of UATS system for on-demand awakening of functional growth factor, thus offering promising prospects in the realm of regenerative medicine.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Animais , Humanos , Camundongos , Fêmur/metabolismo , Masculino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA de Transferência/genética , Osteogênese , Camundongos Endogâmicos C57BL
14.
Artigo em Inglês | MEDLINE | ID: mdl-39102376

RESUMO

Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.


Assuntos
Ração Animal , Grão Comestível , Contaminação de Alimentos , Zearalenona , Zearalenona/análise , Zearalenona/química , Grão Comestível/química , Ração Animal/análise , Contaminação de Alimentos/análise , Animais , Fusarium/metabolismo , Fusarium/química , Humanos
15.
Proc Natl Acad Sci U S A ; 121(34): e2406519121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136995

RESUMO

In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic acid receptor alpha (PML/RARα) fusion protein destroys PML nuclear bodies (NBs), leading to the formation of microspeckles. However, our understanding, largely learned from morphological observations, lacks insight into the mechanisms behind PML/RARα-mediated microspeckle formation and its role in APL leukemogenesis. This study presents evidence uncovering liquid-liquid phase separation (LLPS) as a key mechanism in the formation of PML/RARα-mediated microspeckles. This process is facilitated by the intrinsically disordered region containing a large portion of PML and a smaller segment of RARα. We demonstrate the coassembly of bromodomain-containing protein 4 (BRD4) within PML/RARα-mediated condensates, differing from wild-type PML-formed NBs. In the absence of PML/RARα, PML NBs and BRD4 puncta exist as two independent phases, but the presence of PML/RARα disrupts PML NBs and redistributes PML and BRD4 into a distinct phase, forming PML/RARα-assembled microspeckles. Genome-wide profiling reveals a PML/RARα-induced BRD4 redistribution across the genome, with preferential binding to super-enhancers and broad-promoters (SEBPs). Mechanistically, BRD4 is recruited by PML/RARα into nuclear condensates, facilitating BRD4 chromatin binding to exert transcriptional activation essential for APL survival. Perturbing LLPS through chemical inhibition (1, 6-hexanediol) significantly reduces chromatin co-occupancy of PML/RARα and BRD4, attenuating their target gene activation. Finally, a series of experimental validations in primary APL patient samples confirm that PML/RARα forms microspeckles through condensates, recruits BRD4 to coassemble condensates, and co-occupies SEBP regions. Our findings elucidate the biophysical, pathological, and transcriptional dynamics of PML/RARα-assembled microspeckles, underscoring the importance of BRD4 in mediating transcriptional activation that enables PML/RARα to initiate APL.


Assuntos
Proteínas de Ciclo Celular , Leucemia Promielocítica Aguda , Proteínas de Fusão Oncogênica , Fatores de Transcrição , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Separação de Fases , Proteínas que Contêm Bromodomínio
16.
Int Immunopharmacol ; 141: 113009, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39191123

RESUMO

Long-term inflammation and impaired angiogenesis are the main reasons for the difficulty of diabetic wound healing. What to do to effectively promote vascular endothelial cell response and immune cell reprogramming is the key to diabetic skin healing. However, contemporary therapies cannot simultaneously coordinate the promotion of vascular endothelial cells and macrophage polarization, which leads to an increased rate of disability in patients with chronic diabetes. Therefore, we developed a method of repair composed of self-assembling Prussian blue nanoenzymes, which achieved synergistic support for the immune microenvironment, and also contributed to macrophage polarization in the tissue regeneration cycle, and enhanced vascular endothelial cell activity. The template hydrothermal synthesis PB-Zr nanoplatform was prepared and locally applied to wounds to accelerate wound healing through the synergistic effect of reactive oxygen species (ROS). PB-Zr significantly normalized the wound microenvironment, thereby inhibiting ROS production and inflammatory response, which may be because it inhibited the M1 polarization of macrophages in a rat model of wound. PB-Zr treatment significantly promoted the activity of vascular endothelial cells, which better promoted the growth and regeneration of other tissues in the body. The results confirmed the disease microenvironment of PB-Zr-mediated wound therapy and indicated its application in other inflammation-related diseases.


Assuntos
Diabetes Mellitus Experimental , Ferrocianetos , Macrófagos , Espécies Reativas de Oxigênio , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Ferrocianetos/química , Ferrocianetos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Masculino , Humanos , Ratos Sprague-Dawley , Zircônio/química , Células Endoteliais da Veia Umbilical Humana , Camundongos , Células Endoteliais/efeitos dos fármacos , Nanopartículas/química , Células RAW 264.7 , Ativação de Macrófagos/efeitos dos fármacos
17.
Cell Death Differ ; 31(9): 1184-1201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103535

RESUMO

Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic capability during treatment of tumors with ferroptotic agents is still unknown. Here, we utilized flow sorting combined with redox phospholipidomics to determine that phospholipid peroxidation in tumor microenvironment (TME) macrophages impaired the macrophages ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to the plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using redox phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, our discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Macrófagos , Fagocitose , Fosfolipídeos , Fosfolipídeos/metabolismo , Macrófagos/metabolismo , Animais , Camundongos , Humanos , Receptor 2 Toll-Like/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Células RAW 264.7
18.
Front Cell Infect Microbiol ; 14: 1419949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119294

RESUMO

Human respiratory syncytial virus (HRSV) is the most prevalent pathogen contributing to acute respiratory tract infections (ARTI) in infants and young children and can lead to significant financial and medical costs. Here, we developed a simultaneous, dual-gene and ultrasensitive detection system for typing HRSV within 60 minutes that needs only minimum laboratory support. Briefly, multiplex integrating reverse transcription-recombinase polymerase amplification (RT-RPA) was performed with viral RNA extracted from nasopharyngeal swabs as a template for the amplification of the specific regions of subtypes A (HRSVA) and B (HRSVB) of HRSV. Next, the Pyrococcus furiosus Argonaute (PfAgo) protein utilizes small 5'-phosphorylated DNA guides to cleave target sequences and produce fluorophore signals (FAM and ROX). Compared with the traditional gold standard (RT-qPCR) and direct immunofluorescence assay (DFA), this method has the additional advantages of easy operation, efficiency and sensitivity, with a limit of detection (LOD) of 1 copy/µL. In terms of clinical sample validation, the diagnostic accuracy of the method for determining the HRSVA and HRSVB infection was greater than 95%. This technique provides a reliable point-of-care (POC) testing for the diagnosis of HRSV-induced ARTI in children and for outbreak management, especially in resource-limited settings.


Assuntos
RNA Viral , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Sensibilidade e Especificidade , Humanos , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/virologia , RNA Viral/genética , Lactente , Pyrococcus furiosus/genética , Pyrococcus furiosus/isolamento & purificação , Proteínas Argonautas/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção , Nasofaringe/virologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Pré-Escolar
19.
Biomedicines ; 12(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39200098

RESUMO

Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.

20.
J Food Prot ; 87(9): 100338, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103091

RESUMO

Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.


Assuntos
Acrilamida , Contaminação de Alimentos , Manipulação de Alimentos , Produtos Finais de Glicação Avançada , Temperatura Alta , Reação de Maillard , Humanos , Contaminação de Alimentos/análise , Furaldeído/análogos & derivados , Hidrocarbonetos Policíclicos Aromáticos , Culinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA