Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202414859, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352800

RESUMO

Silicon (Si)-based anodes offer high theoretical capacity for lithium-ion batteries but suffer from severe volume changes and continuous solid electrolyte interphase (SEI) degradation. Here, we address these challenges by selective methylation of 1,3-dioxolane (DOL), thus shifting the unstable bulk polymerization to controlled interfacial reactions and resulting in a highly elastic SEI. Comparative studies of 2-methyl-1,3-dioxolane (2MDOL) and 4-methyl-1,3-dioxolane (4MDOL) reveal that 4MDOL, with its larger ring strain and more stable radical intermediates due to hyperconjugation effect, promotes the formation of high-molecular-weight polymeric species at the electrode-electrolyte interface. This elastic, polymer-rich SEI effectively accommodates volume changes of Si and inhibits continuous side reactions. Our designed electrolyte enables Si-based anode to achieve 85.4% capacity retention after 400 cycles at 0.5 C without additives, significantly outperforming conventional carbonate-based electrolytes. Full cells also demonstrate stable long-term cycling. This work provides new insights into molecular-level electrolyte design for high-performance Si anodes, offering a promising pathway toward next-generation lithium-ion batteries with enhanced energy density and longevity.

2.
J Am Chem Soc ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333048

RESUMO

Lithium (Li) metal batteries hold significant promise in elevating energy density, yet their performance at ultralow temperatures remains constrained by sluggish charge transport kinetics and the formation of unstable interphases. In conventional electrolyte systems, lithium ions are tightly locked in the solvation structure, thereby engendering difficulty in the desolvation process and further exacerbating solvent decomposition. Herein, we propose a new push-pull electrolyte design strategy, utilizing molecular electrostatic potential (ESP) screening to identify 2,2-difluoroethyl trifluoromethanesulfonate (DTF) as an optimal cosolvent. Importantly, DTF exhibits a moderate ESP minimum (-21.0 kcal mol-1) to strike a balance between overly strong and overly weak Li ion affinity, which allows the sulfonyl group to effectively pull Li ions without disrupting the anion-rich solvation structure. Simultaneously, the difluoromethyl group, with a high ESP maximum (37.3 kcal mol-1), pushes solvent molecules via competitive hydrogen bonding. This design reconstructs existing solvation structures and expedites Li ion desolvation. Furthermore, fluorinated DTF demonstrates excellent stability at elevated voltage and facilitates the formation of robust inorganic-rich interphases. Impressively, rapid charge transfer kinetics can be achieved employing designed electrolyte, and the LiNi0.8Mn0.1Co0.1O2 (NMC811)||Li cells demonstrate excellent charge-discharge cycling stability with a high capacity exceeding 153 mAh g-1 even at -40 °C, retaining over 93% of initial capacity after 100 cycles under a 4.8 V charging cutoff. This work provides insights into the design of low-temperature electrolytes with a wide electrochemical window, advancing the development of batteries for extreme conditions.

3.
J Am Chem Soc ; 146(39): 26897-26908, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39312479

RESUMO

Ru-based electrocatalysts hold great promise for developing affordable proton exchange membrane (PEM) electrolyzers. However, the harsh acidic oxidative environment of the acidic oxygen evolution reaction (OER) often causes undesirable overoxidation of Ru active sites and subsequent serious activity loss. Here, we present an ultrathin and conformal depletion layer attached to the Schottky heterojunction of core/shell RuCo/RuCoOx that not only maximizes the availability of active sites but also improves its durability and intrinsic activity for acidic OER. Operando synchrotron characterizations combined with theoretical calculations elucidate that the lattice strain and charge transfer induced by Schottky heterojunction substantially regulate the electronic structures of active sites, which modulates the OER pathway and suppresses the overoxidation of Ru species. Significantly, the closed core/shell architecture of the RuCo/RuCoOx ensures the structure integrity of the Schottky heterojunction under acidic OER conditions. As a result, the core/shell RuCo/RuCoOx Schottky heterojunction exhibits an unprecedented durability up to 250 0 h at 10 mA cm-2 with an ultralow overpotential of ∼170 mV at 10 mA cm-2 in 0.5 M H2SO4. The RuCo/RuCoOx catalyst also demonstrates superior durability in a proton exchange membrane (PEM) electrolyzer, showcasing the potential for practical applications.

4.
ACS Appl Mater Interfaces ; 16(36): 47581-47589, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39207535

RESUMO

High-voltage Li metal batteries (LMBs) based on ether electrolytes hold potential for achieving high energy densities exceeding 500 Wh kg-1, but face challenges with electrolyte oxidative stability, particularly concerning aluminum (Al) current collector corrosion. However, the specific chemistry behind Al corrosion and its effect on electrolyte components remains unexplored. Here, our study delves into Al corrosion in the representative LiFSI-DME electrolyte system, revealing that low-concentration electrolytes exacerbate Al current collector corrosion and solvent decomposition. In contrast, high-concentration electrolytes mitigate these issues, enhancing long-term stability. Remarkably, LiFSI-0.7DME electrolyte demonstrates exceptional stability with up to 1000 cycles at high voltage without significant capacity decay. These findings offer crucial insights into Al corrosion mechanisms in ether-based electrolytes, advancing our comprehension of high-voltage LMBs and facilitating their development for practical applications.

5.
J Am Chem Soc ; 146(25): 17023-17031, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38753972

RESUMO

The development of low-temperature lithium metal batteries (LMBs) encounters significant challenges because of severe dendritic lithium growth during the charging/discharging processes. To date, the precise origin of lithium dendrite formation still remains elusive due to the intricate interplay between the highly reactive lithium metal anode and organic electrolytes. Herein, we unveil the critical role of interfacial defluorination kinetics of localized high-concentration electrolytes (LHCEs) in regulating lithium dendrite formation, thereby determining the performance of low-temperature LMBs. We investigate the impact of solvation structures of LHCEs on low-temperature LMBs by employing tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF) as comparative solvents. The combination of comprehensive characterizations and theoretical simulations reveals that the THF-based LHCE featured with a strong solvation strength exhibits fast interfacial defluorination reaction kinetics, thus leading to the formation of an amorphous and inorganic-rich solid-electrolyte interphase (SEI) that can effectively suppress the growth of lithium dendrites. As a result, the highly reversible Li metal anode achieves an exceptional Coulombic efficiency (CE) of up to ∼99.63% at a low temperature of -30 °C, thereby enabling stable cycling of low-temperature LMB full cells. These findings underscore the crucial role of electrolyte interfacial reaction kinetics in shaping SEI formation and provide valuable insights into the fundamental understanding of electrolyte chemistry in LMBs.

6.
Nat Commun ; 15(1): 2033, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448427

RESUMO

Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.

7.
J Am Chem Soc ; 146(7): 4752-4761, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334447

RESUMO

Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P-S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge-charge cycles, elevating the modulus of K-P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.

8.
Angew Chem Int Ed Engl ; 63(7): e202307802, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37515479

RESUMO

Lithium (Li) metal batteries (LMBs) are the "holy grail" in the energy storage field due to their high energy density (theoretically >500 Wh kg-1 ). Recently, tremendous efforts have been made to promote the research & development (R&D) of pouch-type LMBs toward practical application. This article aims to provide a comprehensive and in-depth review of recent progress on pouch-type LMBs from full cell aspect, and to offer insights to guide its future development. It will review pouch-type LMBs using both liquid and solid-state electrolytes, and cover topics related to both Li and cathode (including LiNix Coy Mn1-x-y O2 , S and O2 ) as both electrodes impact the battery performance. The key performance criteria of pouch-type LMBs and their relationship in between are introduced first, then the major challenges facing the development of pouch-type LMBs are discussed in detail, especially those severely aggravated in pouch cells compared with coin cells. Subsequently, the recent progress on mechanistic understandings of the degradation of pouch-type LMBs is summarized, followed with the practical strategies that have been utilized to address these issues and to improve the key performance criteria of pouch-type LMBs. In the end, it provides perspectives on advancing the R&Ds of pouch-type LMBs towards their application in practice.

9.
J Am Chem Soc ; 145(50): 27774-27787, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079498

RESUMO

Solid electrolytes (SEs) are central components that enable high-performance, all-solid-state lithium batteries (ASSLBs). Amorphous SEs hold great potential for ASSLBs because their grain-boundary-free characteristics facilitate intact solid-solid contact and uniform Li-ion conduction for high-performance cathodes. However, amorphous oxide SEs with limited ionic conductivities and glassy sulfide SEs with narrow electrochemical windows cannot sustain high-nickel cathodes. Herein, we report a class of amorphous Li-Ta-Cl-based chloride SEs possessing high Li-ion conductivity (up to 7.16 mS cm-1) and low Young's modulus (approximately 3 GPa) to enable excellent Li-ion conduction and intact physical contact among rigid components in ASSLBs. We reveal that the amorphous Li-Ta-Cl matrix is composed of LiCl43-, LiCl54-, LiCl65- polyhedra, and TaCl6- octahedra via machine-learning simulation, solid-state 7Li nuclear magnetic resonance, and X-ray absorption analysis. Attractively, our amorphous chloride SEs exhibit excellent compatibility with high-nickel cathodes. We demonstrate that ASSLBs comprising amorphous chloride SEs and high-nickel single-crystal cathodes (LiNi0.88Co0.07Mn0.05O2) exhibit ∼99% capacity retention after 800 cycles at ∼3 C under 1 mA h cm-2 and ∼80% capacity retention after 75 cycles at 0.2 C under a high areal capacity of 5 mA h cm-2. Most importantly, a stable operation of up to 9800 cycles with a capacity retention of ∼77% at a high rate of 3.4 C can be achieved in a freezing environment of -10 °C. Our amorphous chloride SEs will pave the way to realize high-performance high-nickel cathodes for high-energy-density ASSLBs.

10.
Angew Chem Int Ed Engl ; 62(50): e202313447, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885102

RESUMO

Ether-based electrolytes are considered as an ideal electrolyte system for sodium metal batteries (SMBs) due to their superior compatibility with the sodium metal anode (SMA). However, the selection principle of ether solvents and the impact on solid electrolyte interphase formation are still unclear. Herein, we systematically compare the chain ether-based electrolyte and understand the relationship between the solvation structure and the interphasial properties. The linear ether solvent molecules with different terminal group lengths demonstrate remarkably distinct solvation effects, thus leading to different electrochemical performance as well as deposition morphologies for SMBs. Computational calculations and comprehensive characterizations indicate that the terminal group length significantly regulates the electrolyte solvation structure and consequently influences the interfacial reaction mechanism of electrolytes on SMA. Cryogenic electron microscopy clearly reveals the difference in solid electrolyte interphase in various ether-based electrolytes. As a result, the 1,2-diethoxyethane-based electrolyte enables a high Coulombic efficiency of 99.9 %, which also realizes the stable cycling of Na||Na3 V2 (PO4 )3 full cell with a mass loading of ≈9 mg cm-2 over 500 cycles.

11.
Angew Chem Int Ed Engl ; 62(31): e202304411, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269185

RESUMO

The stable cycling of Mg-metal anodes is limited by several problems, including sluggish electrochemical kinetics and passivation at the Mg surface. In this study, we present a high-entropy electrolyte composed of lithium triflate (LiOTf) and trimethyl phosphate (TMP) co-added to magnesium bis(trifluoromethane sulfonyl)imide (Mg(TFSI)2 /1,2-dimethoxyethane (DME) to significantly improve the electrochemical performance of Mg-metal anodes. The as-formed high-entropy Mg2+ -2DME-OTf- -Li+ -DME-TMP solvation structure effectively reduced the Mg2+ -DME interaction in comparison with that observed in traditional Mg(TFSI)2 /DME electrolytes, thereby preventing the formation of insulating components on the Mg-metal anode and promoting its electrochemical kinetics and cycling stability. Comprehensive characterization revealed that the high-entropy solvation structure brought OTf- and TMP to the surface of the Mg-metal anode and promoted the formation of a Mg3 (PO4 )2 -rich interfacial layer, which is beneficial for enhancing Mg2+ conductivity. Consequently, the Mg-metal anode achieved excellent reversibility with a high Coulombic efficiency of 98 % and low voltage hysteresis. This study provides new insights into the design of electrolytes for Mg-metal batteries.

12.
Nat Commun ; 14(1): 2655, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160951

RESUMO

The electrolyte solvation structure and the solid-electrolyte interphase (SEI) formation are critical to dictate the morphology of lithium deposition in organic electrolytes. However, the link between the electrolyte solvation structure and SEI composition and its implications on lithium morphology evolution are poorly understood. Herein, we use a single-salt and single-solvent model electrolyte system to systematically study the correlation between the electrolyte solvation structure, SEI formation process and lithium deposition morphology. The mechanism of lithium deposition is thoroughly investigated using cryo-electron microscopy characterizations and computational simulations. It is observed that, in the high concentration electrolytes, concentrated Li+ and anion-dominated solvation structure initiate the uniform Li nucleation kinetically and favor the decomposition of anions rather than solvents, resulting in inorganic-rich amorphous SEI with high interface energy, which thermodynamically facilitates the formation of granular Li. On the contrary, solvent-dominated solvation structure in the low concentration electrolytes tends to exacerbate the solvolysis process, forming organic-rich mosaic SEI with low interface energy, which leads to aggregated whisker-like nucleation and growth. These results are helpful to tackle the long-standing question on the origin of lithium dendrite formation and guide the rational design of high-performance electrolytes for advanced lithium metal batteries.

13.
Small ; 19(33): e2301247, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086132

RESUMO

Producing hydrogen via electrochemical water splitting with minimum environmental harm can help resolve the energy crisis in a sustainable way. Here, this work fabricates the pure nickel nanopyramid arrays (NNAs) with dense high-index crystalline steps as the cata electrode via a screw dislocation-dominated growth kinetic for long-term durable and large current density hydrogen evolution reaction. Such a monolithic NNAs electrode offers an ultralow overpotential of 469 mV at a current density of 5000 mA cm-2 in 1.0 m KOH electrolyte and shows a high stability up to 7000 h at a current density of 1000 mA cm-2 , which outperforms the reported catas and even the commercial platinum cata for long-term services under high current densities. Its unique structure can substantially stabilize the high-density surface crystalline steps on the catalytic electrode, which significantly elevates the catalytic activity and durability of nickel in an alkaline medium. In a typical commercial hydrogen gas generator, the total energy conversion rate of NNAs reaches 84.5% of that of a commercial Pt/Ti cata during a 60-day test of hydrogen production. This work approach can provide insights into the development of industry-compatible long-term durable, and high-performance non-noble metal catas for various applications.

14.
Angew Chem Int Ed Engl ; 62(23): e202219310, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016460

RESUMO

Albeit ethers are favorable electrolyte solvents for lithium (Li) metal anode, their inferior oxidation stability (<4.0 V vs. Li/Li+ ) is problematic for high-voltage cathodes. Studies of ether electrolytes have been focusing on the archetype glyme structure with ethylene oxide moieties. Herein, we unveil the crucial effect of ion coordination configuration on oxidation stability by varying the ether backbone structure. The designed 1,3-dimethoxypropane (DMP, C3) forms a unique six-membered chelating complex with Li+ , whose stronger solvating ability suppresses oxidation side reactions. In addition, the favored hydrogen transfer reaction between C3 and anion induces a dramatic enrichment of LiF (a total atomic ratio of 76.7 %) on the cathode surface. As a result, the C3-based electrolyte enables greatly improved cycling of nickel-rich cathodes under 4.7 V. This study offers fundamental insights into rational electrolyte design for developing high-energy-density batteries.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36905349

RESUMO

Hydrogen evolution reaction (HER) plays a key role in electrochemical water splitting, which is a sustainable way for hydrogen production. The kinetics of HER is sluggish in neutral media that requires noble metal catalysts to alleviate energy consumption during the HER process. Here, we present a catalyst comprising a ruthenium single atom (Ru1) and nanoparticle (Run) loaded on the nitrogen-doped carbon substrate (Ru1-Run/CN), which exhibits excellent activity and superior durability for neutral HER. Benefiting from the synergistic effect between single atoms and nanoparticles in the Ru1-Run/CN, the catalyst exhibits a very low overpotential down to 32 mV at a current density of 10 mA cm-2 while maintaining excellent stability up to 700 h at a current density of 20 mA cm-2 during the long-term test. Computational calculations reveal that, in the Ru1-Run/CN catalyst, the existence of Ru nanoparticles affects the interactions between Ru single-atom sites and reactants and thus improves the catalytic activity of HER. This work highlights the ensemble effect of electrocatalysts for HER and could shed light on the rational design of efficient catalysts for other multistep electrochemical reactions.

16.
ACS Appl Mater Interfaces ; 15(10): 13155-13164, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857304

RESUMO

Ethers are promising electrolytes for lithium (Li) metal batteries (LMBs) because of their unique stability with Li metal. Although intensive research on designing anion-enriched electrolyte solvation structures has greatly improved their electrochemical stabilities, ether electrolytes are approaching an anodic bottleneck. Herein, we reveal the strong correlation between electrolyte solvation structure and oxidation stability. In contrast to previous designs of weakly solvating solvents for enhanced anion reactivities, the triglyme (G3)-based electrolyte with the largest Li+ solvation energy among different linear ethers demonstrates greatly improved stability on Ni-rich cathodes under an ultrahigh voltage of 4.7 V (93% capacity retention after 100 cycles). Ether electrolytes with a stronger Li+ solvating ability could greatly suppress deleterious oxidation side reactions by decreasing the lifetime of free labile ether molecules. This study provides critical insights into the dynamics of the solvation structure and its significant influence on the interfacial stability for future development of high-efficiency electrolytes for high-energy-density LMBs.

17.
Chemistry ; 29(3): e202202380, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210331

RESUMO

Sodium metal batteries (SMBs) have been widely studied owing to their relatively high energy density and abundant resources. However, they still need systematic improvement to fulfill the harsh operating conditions for their commercialization. In this review, we summarize the recent progress in SMBs in terms of sodium anode modification, electrolyte exploration, and cathode design. Firstly, we give an overview of the current challenges facing Na metal anodes and the corresponding solutions. Then, the traditional liquid electrolytes and the prospective solid electrolytes for SMBs are summarized. In addition, insertion- and conversion-type cathode materials are introduced. Finally, an outlook for the future of practical SMBs is provided.

18.
Angew Chem Int Ed Engl ; 62(6): e202214372, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480194

RESUMO

Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3 V2 (PO4 )3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.

19.
Fundam Res ; 3(6): 909-917, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933015

RESUMO

Transition metal supported N-doped carbon (M-N-C) catalysts for oxygen reduction reaction (ORR) are viewed as the promising candidate to replace Pt-group metal (PGM) for proton exchange membrane fuel cells (PEMFCs). However, the stability of M-N-C is extremely challenging due to the demetalation, H2O2 attack, etc. in the strongly oxidative conditions of PEMFCs. In this study, we demonstrate the universal effect of Zn on promoting the stability of atomically dispersed M-Nx/C (M = Co, Fe, Mn) catalysts and the enhancement mechanism is unveiled for the first time. The best-performing dual-metal-site Zn-Co-N-C catalyst exhibits a high half-wave potential (E 1/2) value of 0.81 V vs. reversible hydrogen electrode (RHE) in acid and outstanding durability with no activity decay after 15,000 accelerated degradation test (ADT) cycles at 60 °C, surpassing most reported Co-based PGM-free catalysts in acid media. For comparison, the Co-N-C in the absence of Zn suffers from a rapid degradation after ADT due to the demetalation and higher H2O2 yield. X-ray adsorption spectroscopy (XAS) and density functional theory (DFT) calculations suggest the more negative formation energy (by 1.2 eV) and increased charge transfer of Zn-Co dual-site structure compared to Co-N-C could strength the Co-N bonds against the demetalation and the optimized d-band center accounts for the improved ORR kinetics.

20.
ACS Appl Mater Interfaces ; 14(45): 51010-51017, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343365

RESUMO

Uniform and compact Zn deposition-dissolution is essential to achieve high Coulombic efficiency and long lifespan for Zn anodes. More attention has been commonly focused on the suppression of macroscopic Zn dendrites in the previous reports. The rational control of the microstructure of Zn deposition to prevent the intrinsic volume expansion and pulverization of Zn metal so as to stabilize Zn anodes is less discussed. Herein, we construct a three-dimensional topological Zn deposition at the nanoscale through an in situ electrochemical process in the optimal hybrid aqueous electrolyte. The topological electrode structure can efficiently accommodate microscopic strain and volume variation and thus largely preserve the macroscopic integrity and electrical contact of Zn anodes, leading to enhanced reversibility and stability. With the unique topological structure of Zn deposition, the Coulombic efficiency of Zn anodes could reach >99.9% with excellent cycling over 1182 h at 2 mA cm-2 and 2 mA h cm-2 (Zn utilization: 11.4%). The evolution of "dead" Zn during repeated cycling is first investigated using a homemade semiquantitative analysis method to determine the critical "short slab" for aqueous Zn batteries under the practical application. This work provides an insightful method to regulate the microscopic morphology of Zn deposition for high-performance Zn batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA