Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0235490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628708

RESUMO

Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomarkers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in metastatic colorectal cancer (mCRC). This retrospective study aimed to report the mutational status prevalence of these genes, explore their possible associations with clinicopathological features, and build and validate a predictive model. To achieve these objectives, 500 mCRC Mexican patients were screened for clinically relevant mutations in RAS/BRAF genes. Fifty-two percent of these specimens harbored clinically relevant mutations in at least one screened gene. Among these, 86% had a mutation in KRAS, 7% in NRAS, 6% in BRAF, and 2% in both NRAS and BRAF. Only tumor location in the proximal colon exhibited a significant correlation with KRAS and BRAF mutational status (p-value = 0.0414 and 0.0065, respectively). Further t-SNE analyses were made to 191 specimens to reveal patterns among patients with clinical parameters and KRAS mutational status. Then, directed by the results from classical statistical tests and t-SNE analysis, neural network models utilized entity embeddings to learn patterns and build predictive models using a minimal number of trainable parameters. This study could be the first step in the prediction for RAS/BRAF mutational status from tumoral features and could lead the way to a more detailed and more diverse dataset that could benefit from machine learning methods.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Modelos Estatísticos , Taxa de Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Feminino , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Redes Neurais de Computação , Estudos Retrospectivos
2.
Methods Mol Biol ; 1851: 83-103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30298393

RESUMO

The analysis of coevolutionary signals from families of evolutionarily related sequences is a recent conceptual framework that provides valuable information about unique intramolecular interactions and, therefore, can assist in the elucidation of biomolecular conformations. It is based on the idea that compensatory mutations at specific residue positions in a sequence help preserve stability of protein architecture and function and leave a statistical signature related to residue-residue interactions in the 3D structure of the protein. Consequently, statistical analysis of these correlated mutations in subsets of protein sequence alignments can be used to predict which residue pairs should be in spatial proximity in the native functional protein fold. These predicted signals can be then used to guide molecular dynamics (MD) simulations to predict the three-dimensional coordinates of a functional amino acid chain. In this chapter, we introduce a general and efficient methodology to perform coevolutionary analysis on protein sequences and to use this information in combination with computational physical models to predict the native 3D conformation of functional polypeptides. We present a step-by-step methodology that includes the description and application of software tools and databases required to infer tertiary structures of a protein fold. The general pipeline includes instructions on (1) how to obtain direct amino acid couplings from protein sequences using direct coupling analysis (DCA), (2) how to incorporate such signals as interaction potentials in Cα structure-based models (SBMs) to drive protein-folding MD simulations, (3) a procedure to estimate secondary structure and how to include such estimates in the topology files required in the MD simulations, and (4) how to build full atomic models based on the top Cα candidates selected in the pipeline. The information presented in this chapter is self-contained and sufficient to allow a computational scientist to predict structures of proteins using publicly available algorithms and databases.


Assuntos
Algoritmos , Proteínas/química , Proteínas/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína
3.
Front Pharmacol ; 9: 320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681852

RESUMO

The treatment of Type 2 Diabetes Mellitus (T2DM) consists primarily of oral antidiabetic drugs (OADs) that stimulate insulin secretion, such as sulfonylureas (SUs) and reduce hepatic glucose production (e.g., biguanides), among others. The marked inter-individual differences among T2DM patients' response to these drugs have become an issue on prescribing and dosing efficiently. In this study, fourteen polymorphisms selected from Genome-wide association studies (GWAS) were screened in 495 T2DM Mexican patients previously treated with OADs to find the relationship between the presence of these polymorphisms and response to the OADs. Then, a novel association screening method, based on global probabilities, was used to globally characterize important relationships between the drug response to OADs and genetic and clinical parameters, including polymorphisms, patient information, and type of treatment. Two polymorphisms, ABCC8-Ala1369Ser and KCNJ11-Glu23Lys, showed a significant impact on response to SUs. Heterozygous ABCC8-Ala1369Ser variant (A/C) carriers exhibited a higher response to SUs compared to homozygous ABCC8-Ala1369Ser variant (A/A) carriers (p-value = 0.029) and to homozygous wild-type genotypes (C/C) (p-value = 0.012). The homozygous KCNJ11-Glu23Lys variant (C/C) and wild-type (T/T) genotypes had a lower response to SUs compared to heterozygous (C/T) carriers (p-value = 0.039). The screening of OADs response related genetic and clinical factors could help improve the prescribing and dosing of OADs for T2DM patients and thus contribute to the design of personalized treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA