Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Open Biol ; 6(6)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27251748

RESUMO

Adipose tissue is a key determinant of whole-body metabolism and energy homeostasis. Unravelling the transcriptional regulatory process during adipogenesis is therefore highly relevant from a biomedical perspective. In these studies, zinc finger protein B-cell lymphoma 6 (Bcl6) was demonstrated to have a role in early adipogenesis of mesenchymal stem cells. Bcl6 is enriched in preadipose versus non-preadipose fibroblasts and shows upregulated expression in the early stage of adipogenesis. Gain- and loss-of-function studies revealed that Bcl6 acts as a key regulator of adipose commitment and differentiation both in vitro and ex vivo RNAi-mediated knockdown of Bcl6 in C3H10T1/2 cells greatly inhibited adipogenic potential, whereas Bcl6 overexpression enhanced adipogenic differentiation. This transcription factor also directly or indirectly targets and controls the expression of some early and late adipogenic regulators (i.e. Zfp423, Zfp467, KLF15, C/EBPδ, C/EBPα and PPARγ). We further identified that Bcl6 transactivated the signal transducers and activators of transcription 1 (STAT1), which was determined as a required factor for adipogenesis. Moreover, overexpression of STAT1 rescued the impairment of adipogenic commitment and differentiation induced by Bcl6 knockdown in C3H10T1/2 cells, thereby confirming that STAT1 is a downstream direct target of Bcl6. This study identifies Bcl6 as a positive transcriptional regulator of early adipose commitment.


Assuntos
Adipogenia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT1/genética , Células 3T3-L1 , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Mesenquimais , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-6/genética , Ativação Transcricional
2.
Genet. mol. biol ; Genet. mol. biol;30(2): 370-374, Mar. 2007. tab
Artigo em Inglês | LILACS | ID: lil-452813

RESUMO

The MYF5 gene is first inducibly expressed in muscle cell during embryonic muscle development and plays an important role in regulating the differentiation of skeletal muscle precursors. In this study we used PCR-RFLP to investigate two pig (Sus scrofa) populations (n = 302) for two MYF5 gene polymorphisms, a previously unreported novel Met-Leu shift single nucleotide polymorphism (SNP) MYF5/Hsp92II located on exon 1 and the previously identified intron 1 MYF5/HinfI SNP. Haplotype and association analysis showed that haplotypes of the two SNPs were significantly associated with drip loss rate (DLR, p < 0.05), water holding capacity (WHC, p < 0.05), biceps femoris meat color value (MCV2, p < 0.05), biceps femoris marbling score (MM2, p < 0.01), longissimus dorsi intramuscular fat percentage (IMF, p < 0.01) and longissimus dorsi Water moisture content (WM, p < 0.01) in the population 2. However, further studies are needed to confirm these preliminary results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA