Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5958, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045866

RESUMO

Dengue viruses (DENVs) are mosquito-borne flaviviruses causing millions of human infections each year and pose a challenge for public health systems worldwide. Aedes aegypti is the principal vector species transmitting DENVs to humans. Controlling Ae. aegypti is difficult due to the abundance of breeding sites and increasing insecticide resistance in the vector populations. Developing new vector control strategies is critical for decreasing the disease burden. One potential approach is genetically replacing Ae. aegypti populations with vector populations highly resistant to DENV transmission. Here, we focus on an alternative strategy for generating dengue 2 virus (DENV-2) resistance in genetically-modified Ae. aegypti in which the mosquitoes express an inactive form of Michelob_x (Mx), an antagonist of the Inhibitor of Apoptosis (IAP), to induce apoptosis in those cells in which actively replicating DENV-2 is present. The inactive form of Mx was flanked by the RRRRSAG cleavage motif, which was recognized by the NS2B/NS3 protease of the infecting DENV-2 thereby releasing and activating Mx which then induced apoptosis. Our transgenic strain exhibited a significantly higher mortality rate than the non-transgenic control when infected with DENV-2. We also transfected a DNA construct containing inactive Mx fused to eGFP into C6/36 mosquito cells and indirectly observed Mx activation on days 3 and 6 post-DENV-2 infections. There were clear signs that the viral NS2B/NS3 protease cleaved the transgene, thereby releasing Mx protein into the cytoplasm, as was confirmed by the detection of eGFP expression in infected cells. The present study represents proof of the concept that virus infection can be used to induce apoptosis in infected mosquito cells.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Vírus da Dengue/genética , Morte Celular , Transgenes , Peptídeo Hidrolases/genética
2.
Malar J ; 15: 153, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964736

RESUMO

BACKGROUND: The circumsporozoite protein is the most abundant polypeptide expressed by sporozoites, the malaria parasite stage capable of infecting humans. Sporozoite invasion of mosquito salivary glands prior to transmission is likely mediated by a receptor/ligand-like interaction of the parasites with the target tissues, and the amino (NH2)-terminal portion of CSP is involved in this interaction but not the TSR region on the carboxyl (C)-terminus. Peptides based on the NH2-terminal domain could compete with the parasites for the salivary gland receptors and thus inhibit penetration. METHODS: Peptides based on the NH2-terminus and TSR domains of the CSP from avian or human malaria parasites, Plasmodium gallinaceum and Plasmodium falciparum, respectively, were expressed endogenously in mosquito haemolymph using a transient (Sindbis virus-mediated) or stable (piggyBac-mediated transgenesis) system. RESULTS: Transient endogenous expression of partial NH2-terminus peptide from P. falciparum CSP in P. gallinaceum-infected Aedes aegypti resulted in a reduced number of sporozoites in the salivary glands. When a transgenic approach was used to express a partial CSP NH2-terminal domain from P. gallinaceum the number of sporozoites in the salivary glands did not show a difference when compared to controls. However, a significant difference could be observed when mosquitoes with a lower infection were analysed. The same result could not be observed with mosquitoes endogenously expressing peptides based on the TSR domain from either P. gallinaceum or P. falciparum. CONCLUSION: These results support the conclusion that CSP partial NH2-terminal domain can be endogenously expressed to promote a competition for the receptor used by sporozoites to invade salivary glands, and they could be used to block this interaction and reduce parasite transmission. The same effect cannot be obtained with peptides based on the TSR domain.


Assuntos
Aedes/parasitologia , Adesão Celular , Plasmodium falciparum/fisiologia , Plasmodium gallinaceum/fisiologia , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Aedes/genética , Animais , Feminino , Expressão Gênica , Proteínas de Protozoários/genética , Glândulas Salivares/parasitologia , Transgenes
3.
PLoS Negl Trop Dis ; 8(7): e3005, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25033462

RESUMO

BACKGROUND: Anopheles aquasalis is a major malaria vector in coastal areas of South and Central America where it breeds preferentially in brackish water. This species is very susceptible to Plasmodium vivax and it has been already incriminated as responsible vector in malaria outbreaks. There has been no high-throughput investigation into the sequencing of An. aquasalis genes, transcripts and proteins despite its epidemiological relevance. Here we describe the sequencing, assembly and annotation of the An. aquasalis transcriptome. METHODOLOGY/PRINCIPAL FINDINGS: A total of 419 thousand cDNA sequence reads, encompassing 164 million nucleotides, were assembled in 7544 contigs of ≥ 2 sequences, and 1999 singletons. The majority of the An. aquasalis transcripts encode proteins with their closest counterparts in another neotropical malaria vector, An. darlingi. Several analyses in different protein databases were used to annotate and predict the putative functions of the deduced An. aquasalis proteins. Larval and adult-specific transcripts were represented by 121 and 424 contig sequences, respectively. Fifty-one transcripts were only detected in blood-fed females. The data also reveal a list of transcripts up- or down-regulated in adult females after a blood meal. Transcripts associated with immunity, signaling networks and blood feeding and digestion are discussed. CONCLUSIONS/SIGNIFICANCE: This study represents the first large-scale effort to sequence the transcriptome of An. aquasalis. It provides valuable information that will facilitate studies on the biology of this species and may lead to novel strategies to reduce malaria transmission on the South American continent. The An. aquasalis transcriptome is accessible at http://exon.niaid.nih.gov/transcriptome/An_aquasalis/Anaquexcel.xlsx.


Assuntos
Anopheles , Regulação da Expressão Gênica no Desenvolvimento/genética , Insetos Vetores , Transcriptoma/genética , Animais , Anopheles/genética , Anopheles/metabolismo , Feminino , Insetos Vetores/genética , Insetos Vetores/metabolismo , Malária/transmissão , Masculino
5.
Parasit Vectors ; 6: 364, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24367904

RESUMO

BACKGROUND: Aedes aegypti mosquitoes are the main vectors of dengue viruses. Despite global efforts to reduce the prevalence of dengue using integrated vector management strategies, innovative alternatives are necessary to help prevent virus transmission. Detailed characterizations of Ae. aegypti genes and their products provide information about the biology of mosquitoes and may serve as foundations for the design of new vector control methods. FINDINGS: We studied the Ae. aegypti gene, AAEL010714, that encodes a two-domain odorant-binding protein, AaegOBP45. The predicted gene structure and sequence were validated, although single nucleotide polymorphisms were observed. Transcriptional and translational products accumulate in the ovaries of blood fed females and are not detected or are at low abundance in other tissues. CONCLUSIONS: We validated the Ae. aegypti AAEL010714 gene sequence and characterized the expression profile of a two-domain OBP expressed in ovaries. We propose that AaegOBP45 function as a component of the mosquito eggshell.


Assuntos
Aedes/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/metabolismo , Ovário/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Proteínas de Insetos/genética , Dados de Sequência Molecular , Especificidade de Órgãos , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Tempo
6.
Malar J ; 9: 127, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20470395

RESUMO

BACKGROUND: The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. METHODS: The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. RESULTS: The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. CONCLUSION: Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents.


Assuntos
Anopheles/genética , Composição de Bases/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Filogenia , Animais , Anopheles/classificação , Teorema de Bayes , Belize , Brasil , DNA Mitocondrial/classificação , Feminino , Genes de Insetos , Especiação Genética , Genótipo , Cadeias de Markov , Método de Monte Carlo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
7.
J Insect Sci ; 6: 1-26, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-19537968

RESUMO

Aedes (Stegomyia) aegypti is an important dengue vector in tropical and subtropical zones throughout the world. A transcriptome of Ae. aegypti vitellogenic fat bodies is described here. The fat body is a dynamic tissue that participates in multiple biochemical functions of intermediate metabolism. A total of 589 randomly selected cDNAs were assembled into 262 clusters based on their primary sequence similarities. The putative translated proteins were classified into categories based on their function in accordance with significant similarity using the BlastX at NCBI FTP site and Pfam (Bateman et al. 2000) and SMART (Schultz et al. 2000) databases. The characterization of transcripts expressed in the fat body of Ae. aegypti at 24 hours post blood meal provides a basic tool for understanding the processes occurring in this organ and could identify putative new genes whose promoters can be used to specifically express transgenes in the fat bodies of Ae. aegypti.


Assuntos
Aedes/metabolismo , Perfilação da Expressão Gênica , Animais , Corpo Adiposo/metabolismo , Genes de Insetos/genética , Dados de Sequência Molecular
8.
Insect Biochem Mol Biol ; 33(1): 63-71, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12459201

RESUMO

The sera of persons with strong allergic responses to the bites of the mosquito, Culex quinquefasciatus, contained IgE antibodies reactive with two major salivary gland proteins with molecular weights of 35 and 28 kDa. These antigens were purified, their amino termini sequenced, and the sequences were used to search for similar sequences in public databases. Two cDNAs, CuQu-D7Clu1 and CuQu-D7Clu12, which encode D7-related proteins, were identified as containing predicted amino acid sequences identical to the 35 and 28 kDa antigens, respectively. These proteins are expressed specifically in adult female salivary glands and, their predicted tertiary structures are consistent with a role as carriers of hydrophobic molecules in mosquito saliva.


Assuntos
Antígenos/imunologia , Culex/imunologia , Glândulas Salivares/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Criança , Pré-Escolar , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA