Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Pulm Med ; 22(1): 278, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854255

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third cause of death worldwide. COPD is characterised by dyspnoea, limited exercise tolerance, and muscle dysfunction. Muscle dysfunction has been linked to dysregulation between muscle protein synthesis, myogenesis and degradation mechanisms. Conventional concentric cycling has been shown to improve several clinical outcomes and reduce muscle wasting in COPD patients. Eccentric cycling is a less explored exercise modality that allows higher training workloads imposing lower cardio-metabolic demand during exercise, which has shown to induce greater muscle mass and strength gains after training. Interestingly, the combination of eccentric and concentric cycling training has scarcely been explored. The molecular adaptations of skeletal muscle after exercise interventions in COPD have shown equivocal results. The mechanisms of muscle wasting in COPD and whether it can be reversed by exercise training are unclear. Therefore, this study aims two-fold: (1) to compare the effects of 12 weeks of eccentric (ECC), concentric (CONC), and combined eccentric/concentric (ECC/CONC) cycling training on muscle mass and function, cardiometabolic health, physical activity levels and quality of life in severe COPD patients; and (2) to examine the molecular adaptations regulating muscle growth after training, and whether they occur similarly in specific muscle fibres (i.e., I, IIa and IIx). METHODS: Study 1 will compare the effects of 12 weeks of CONC, ECC, versus ECC/CONC training on muscle mass and function, cardiometabolic health, levels of physical activity and quality of life of severe COPD patients using a multicentre randomised trial. Study 2 will investigate the effects of these training modalities on the molecular adaptations regulating muscle protein synthesis, myogenesis and muscle degradation in a subgroup of patients from Study 1. Changes in muscle fibres morphology, protein content, genes, and microRNA expression involved in skeletal muscle growth will be analysed in specific fibre-type pools. DISCUSSION: We aim to demonstrate that a combination of eccentric and concentric exercise could maximise the improvements in clinical outcomes and may be ideal for COPD patients. We also expect to unravel the molecular mechanisms underpinning muscle mass regulation after training in severe COPD patients. TRIAL REGISTRY: Deutshches Register Klinischer Studien; Trial registration: DRKS00027331; Date of registration: 12 January 2022. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027331 .


Assuntos
Doenças Cardiovasculares , Doença Pulmonar Obstrutiva Crônica , Humanos , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular , Desempenho Físico Funcional , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/terapia , Qualidade de Vida
2.
Appl Physiol Nutr Metab ; 45(11): 1232-1237, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32413271

RESUMO

We aimed to compare the cardiorespiratory, metabolic, and perceptual responses to high- and moderate-intensity eccentric cycling versus moderate-intensity concentric cycling in chronic obstructive pulmonary disease (COPD) patients. Ten patients with moderate COPD (forced expiratory volume in 1 s (FEV1) = 68.6% ± 20.4% of predicted; 68.3 ± 9.1 years) performed 30 min of moderate-intensity concentric (CONC-M: 50% maximum workload; Wmax), moderate-intensity eccentric (ECC-M: 50% Wmax), and high-intensity eccentric (ECC-H: 100% Wmax) cycling. Average power output, oxygen consumption (V̇O2), minute ventilation (VE), respiratory frequency (fR), oxygen saturation (SpO2), heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), rate of perceived exertion (RPE), and dyspnea were measured during cycling. Compared with CONC-M, lower V̇O2 (-52% ± 14%), VE (-47% ± 16%), fR (-21% ± 14%), HR (-14% ± 16%), SBP (-73% ± 54%), RPE (-36% ± 26%), and dyspnea (-41% ± 37%) were found during ECC-M. During ECC-H, a similar metabolic demand to CONC-M was found. However, average power output was 117% ± 79% higher during ECC-H. Eccentric cycling can be safely performed by COPD patients and induced lower cardiorespiratory, metabolic, and perceptual responses than concentric exercise when performed at the same workload. Novelty Moderate- and high-intensity eccentric cycling can be performed by COPD patients. Moderate-intensity eccentric cycling showed lower cardiorespiratory, metabolic, and perceptual demand than concentric cycling at the same workload in COPD patients. Even at double workload, eccentric cycling induces lower cardiorespiratory, metabolic, and perceptual demand than moderate-intensity concentric cycling.


Assuntos
Exercício Físico , Esforço Físico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Pressão Sanguínea , Frequência Cardíaca , Humanos , Pessoa de Meia-Idade , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA