Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 596(20): 2644-2658, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35662006

RESUMO

DUX4 is a transcription factor required during early embryonic development in placental mammals. In this work, we provide evidence that DUX4 is a co-repressor of nuclear receptors (NRs) of progesterone (PR) and glucocorticoids (GR). The DUX4 C-ter and N-ter regions, including the nuclear localization signals and homeodomain motifs, contribute to the co-repressor activity of DUX4 on PR and GR. Immunoprecipitation studies, using total protein extracts of cells expressing tagged versions of DUX4 and GR, support that these proteins are physically associated. Our studies suggest that DUX4 could modulate gene expression by co-regulating the activity of hormone NRs. This is the first report highlighting a potential endocrine role for DUX4.


Assuntos
Distrofia Muscular Facioescapuloumeral , Feminino , Gravidez , Animais , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Glucocorticoides , Progesterona , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Correpressoras , Receptores de Glucocorticoides/genética , Sinais de Localização Nuclear , Placenta/metabolismo , Fatores de Transcrição , Receptores Citoplasmáticos e Nucleares , Mamíferos
2.
Langmuir ; 32(4): 947-53, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26799556

RESUMO

We show that homogeneously mixed self-assembled monolayers (SAMs) of mercaptoalkanoic acids of different chain lengths can be used to build up a pH-sensitive supramolecular switch. The acids with short and long alkyl chains interact via the strong hydrogen bond between carboxylic acid groups. The pH acts as a trigger by breaking or restoring the hydrogen bond interaction in basic or acidic solutions, respectively. The corresponding changes in the monolayer structure were determined by ellipsometry, surface-enhanced Raman spectroscopy, and contact angle measurements. Density functional theory (DFT) calculations were performed to elucidate the structures of interacting molecules compatible with the surface coverage obtained from electrochemical reductive desorption experiments. The simplicity of the preparation procedure assures a high reproducibility whereas the stability of the homogeneous mixed SAM guarantees the reversibility of the switching process.

3.
PLoS One ; 8(10): e75614, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116060

RESUMO

DUX4 (Double Homeobox Protein 4) is a nuclear transcription factor encoded at each D4Z4 unit of a tandem-repeat array at human chromosome 4q35. DUX4 constitutes a major candidate pathogenic protein for facioscapulohumeral muscular dystrophy (FSHD), the third most common form of inherited myopathy. A low-level expression of DUX4 compromises cell differentiation in myoblasts and its overexpression induces apoptosis in cultured cells and living organisms. In this work we explore potential molecular determinants of DUX4 mediating nuclear import and cell toxicity. Deletion of the hypothetical monopartite nuclear localization sequences RRRR(23), RRKR(98) and RRAR(148) (i.e. NLS1, NLS2 and NLS3, respectively) only partially delocalizes DUX4 from the cell nuclei. Nuclear entrance guided by NLS1, NLS2 and NLS3 does not follow the classical nuclear import pathway mediated by α/ß importins. NLS and homeodomain mutants from DUX4 are dramatically less cell-toxic than the wild type molecule, independently of their subcellular localization. A triple ΔNLS1-2-3 deletion mutant is still partially localized in the nuclei, indicating that additional sequences in DUX4 contribute to nuclear import. Deletion of ≥111 amino acids from the C-terminal of DUX4, on a ΔNLS1-2-3 background, almost completely re-localizes DUX4 to the cytoplasm, indicating that the C-ter tail contributes to subcellular trafficking of DUX4. Also, C-terminal deletion mutants of DUX4 on a NLS wild type background are less toxic than wild type DUX4. Results reported here indicate that DUX4 possesses redundant mechanisms to assure nuclear entrance and that its various transcription-factor associated domains play an essential role in cell toxicity.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proteínas de Homeodomínio/genética , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Mutagênese Sítio-Dirigida
4.
Mutat Res ; 637(1-2): 197-204, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17727900

RESUMO

Escherichia colidam cells have an active but non-directed mismatch repair system; therefore, assembly of MutSLH complex at a mismatched base pair can result in MutH-mediated cleavage of GATC sites in both DNA strands. Unpaired double-strand breaks on a fraction of the replication errors occurring in dam cells presumably cause cell death, selectively eliminating these putative mutants from the population. We show that E. colidam cells transformed with plasmids containing either the mutS, mutL or mutH gene display a mutation frequency three to eight times lower than that of the parental dam strain, due to increased mismatch-stimulated cell killing. Transformed strains are also more susceptible to killing by the base analogue 2-aminopurine. However, dam and dam transformed cells have similar duplication time, proportion of live/dead cells and morphology.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Mutação , Plasmídeos , Transformação Bacteriana , 2-Aminopurina/farmacologia , Genes Bacterianos , Proteínas MutL
5.
Biochem J ; 388(Pt 3): 879-87, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15709980

RESUMO

Escherichia coli MutS, MutL and MutH proteins act sequentially in the MMRS (mismatch repair system). MutH directs the repair system to the newly synthesized strand due to its transient lack of Dam (DNA-adenine methylase) methylation. Although Pseudomonas aeruginosa does not have the corresponding E. coli MutH and Dam homologues, and consequently the MMRS seems to work differently, we show that the mutL gene from P. aeruginosa is capable of complementing a MutL-deficient strain of E. coli. MutL from P. aeruginosa has conserved 21 out of the 22 amino acids known to affect functioning of E. coli MutL. We showed, using protein affinity chromatography, that the C-terminal regions of P. aeruginosa and E. coli MutL are capable of specifically interacting with E. coli MutH and retaining the E. coli MutH. Although, the amino acid sequences of the C-terminal regions of these two proteins are only 18% identical, they are 88% identical in the predicted secondary structure. Finally, by analysing (E. coli-P. aeruginosa) chimaeric MutL proteins, we show that the N-terminal regions of E. coli and P. aeruginosa MutL proteins function similarly, in vivo and in vitro. These new findings support the hypothesis that a large surface, rather than a single amino acid, constitutes the MutL surface for interaction with MutH, and that the N- and C-terminal regions of MutL are involved in such interactions.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ativação Enzimática , Genoma Bacteriano , Dados de Sequência Molecular , Proteínas MutL , Proteínas Recombinantes , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA