Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 139: 34-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27449676

RESUMO

The entomopathogenic fungus Lecanicillium lecanii persists in a highly dynamic network of habitat patches (i.e., a metapopulation) formed by its primary host, the green coffee scale Coccus viridis. Lecanicillium lecanii is an important biological control of both C. viridis and the coffee rust, Hemileia vastatrix. Successfully managing this biocontrol agent will depend on an increased understanding of the characteristics of its dispersal, as migration between occupied and unoccupied patches is essential for the persistence of this metapopulation. In the present study, we employ a population genetics approach, and show that in our study system, a coffee farm in the Soconusco region of southern Mexico, L. lecanii is characterized by clear spatial genetic structure among plots within the farm but a lack of apparent structure at smaller scales. This is consistent with dispersal dominated by highly localized transport, such as by insects or rain splash, and less dependence on longer distance dispersal such as wind transport. The study site was dominated by a few multi-locus microsatellite genotypes, and their identities and large-scale locations persist across both study years, suggesting that local epizootics (outbreaks) are initiated each wet season by residual propagules from the previous wet season, and not by long-distance transport of propagules from other sites. The index of association, a measure of linkage disequilibrium, indicates that epizootics are primarily driven by asexual, clonal reproduction, which is consistent with the apparent lack of a teleomorph in the study site and the presence of only a single mating type across the site (MAT-1-2-1). Although the same predominant clonal genotypes were found across years, a drastic difference in genotypic diversity was witnessed across two sites between the two years, suggesting that interclonal selection was occurring. In light of the dispersal limitation of L. lecanii, spatial structure may be an essential axis of management to ensure the persistence of L. lecanii and preserve the ecosystem services provided by this versatile biocontrol agent in this and similar coffee farms.


Assuntos
Entomophthorales/genética , Hemípteros/parasitologia , Animais , Coffea , Fazendas , México , Controle Biológico de Vetores/métodos , Reação em Cadeia da Polimerase , Zigomicose/veterinária
2.
PLoS One ; 9(5): e97809, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24842117

RESUMO

Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants' dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution - a signal of spatial self organization - but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.


Assuntos
Distribuição Animal , Formigas/fisiologia , Meio Ambiente , Comportamento de Nidação/fisiologia , Comportamento Espacial/fisiologia , Animais , Simulação por Computador , México , Modelos Biológicos , Dinâmica Populacional , Árvores , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA