Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 715: 136671, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32050319

RESUMO

Elevated Arsenic (As) and Fluoride (F) concentrations in groundwater have been studied in the shallow aquifers of northeastern of La Pampa province, in the Chaco-Pampean plain, Argentina. The source of As and co-contaminants is mainly geogenic, from the weathering of volcanic ash and loess (rhyolitic glass) that erupted from the Andean volcanic range. In this study we have assessed the groundwater quality in two semi-arid areas of La Pampa. We have also identified the spatial distribution of As and co-contaminants in groundwater and determined the major factors controlling the mobilization of As in the shallow aquifers. The groundwater samples were circum-neutral to alkaline (7.4 to 9.2), oxidizing (Eh ~0.24 V) and characterized by high salinity (EC = 456-11,400 µS/cm) and Na+-HCO3- water types in recharge areas. Carbonate concretions ("tosca") were abundant in the upper layers of the shallow aquifer. The concentration of total As (5.6 to 535 µg/L) and F (0.5 to 14.2 mg/L) were heterogeneous and exceeded the recommended WHO Guidelines and the Argentine Standards for drinking water. The predominant As species were arsenate As(V) oxyanions, determined by thermodynamic calculations. Arsenic was positively correlated with bicarbonate (HCO3-), fluoride (F), boron (B) and vanadium (V), but negatively correlated with iron (Fe), aluminium (Al), and manganese (Mn), which were present in low concentrations. The highest amount of As in sediments was from the surface of the dry lake. The mechanisms for As mobilization are associated with multiple factors: geochemical reactions, hydrogeological characteristics of the local aquifer and climatic factors. Desorption of As(V) at high pH, and ion competition for adsorption sites are considered the principal mechanisms for As mobilization in the shallow aquifers. In addition, the long-term consumption of the groundwater could pose a threat for the health of the local community and low cost remediation techniques are required to improve the drinking water quality.

2.
Sci Total Environ ; 358(1-3): 97-120, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16055168

RESUMO

Factors controlling arsenic (As) mobilization in the aquifers of the Río Dulce alluvial cone were investigated. Groundwater analyses show severe As contamination (average concentration of 743 mug/L) from geogenic sources, but spatial variability of As concentration is considerable. Sequential leaching of sediment samples from unsaturated zone using de-ionised water, bicarbonate, acetate, and oxalate extracted As to different extents. Sediment oxalate extraction showed that Al and Mn oxide and hydroxides are more abundant than Fe oxides and hydroxides, in spite of similar total Fe, Mn, and Al concentrations in the sediment. Speciation calculations performed for saturated zone samples indicated that Fe and Al oxides and hydroxides are stable in groundwater, suggesting that As adsorption processes may be to some extent controlled by the presence of Fe and Al mineral phases. Principal Component Analysis (PCA) showed that As is related to F, V, Mo, B, Si, most likely due to their common origin in volcanic ash. This suggests the volcanic ash as the probable source of groundwater As. Locally, elevated pH values linked to carbonate dissolution, cation exchange, and dissolution of silicates promote release of adsorbed As. Another factor contributing to the release of As locally may be the input of organic matter from excessive irrigation. The conceptual model of As release includes: i) As influx from dissolution of volcanic glass in volcanic ash, ii) adsorption of As on the surface of Fe and Al mineral phases in relatively low pH zones, and iii) high mobility of As in high pH zones. Future work should be focused on the determination of mineralogical forms of As in volcanic ash and on detailed investigation on factors controlling As mobility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA