Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 127(41): 14366-74, 2005 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-16218631

RESUMO

An open capsule-type octanuclear heterometallic sulfide cluster without an intramolecular inversion center [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)](2) (5) has been synthesized for the first time by stepwise connection of three mononuclear building blocks, i.e., (i) [RuCl(2)(eta(6)-C(6)Me(6)){P(OMe)(3)}] (1a) as an octahedral terminal building block to control the direction of cluster expansion, (ii) [MoOS(3)](2)(-) as a tetrahedral polydentate building block owing to the strong coordination ability of the S atoms, and (iii) a CuI building block to form a trigonal planar (mu-S)(2)CuI unit or to form a linkage unit of two incomplete cubane-type octanuclear frameworks. The stepwise connection was made in the following order: [RuCl(2)(eta(6)-C(6)Me(6)){P(OMe)(3)}] (1a, mononuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoOS(mu(2)-S)(2)}] (2a, dinuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(2)-S)(2)(mu(3)-S)}CuI] (3a, butterfly-type trinuclear) --> [Ru(eta(6)-C(6)Me(6)){P(OMe)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)](2) (5). When P(OMe)(3) was replaced by P(OEt)(3), which is more bulky than P(OMe)(3), in the starting ruthenium building block [RuCl(2)(eta(6)-C(6)Me(6)){P(OEt)(3)}] (1b, mononuclear), only the tetranuclear incomplete single cubane cluster [Ru(eta(6)-C(6)Me(6)){P(OEt)(3)}{MoO(mu(3)-S)(3)}(CuI)(2)] (6) was generated, owing to the steric effect of P(OEt)(3).


Assuntos
Compostos Organometálicos , Sulfetos/química , Elementos de Transição/química , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Estereoisomerismo
2.
Inorg Chem ; 44(10): 3494-8, 2005 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-15877431

RESUMO

The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) (1) with [(CpRhCl(2))(2)] afforded a novel rhodium-molybdenum cluster, [{Mo(3)RhCpS(4)(H(2)O)(7)(O)}(2)](8+) (2). X-ray structure analysis of [2](pts)(8).14H(2)O (pts(-) = CH(3)C(6)H(4)SO(3)(-)) has revealed the existence of a new oxo-bridged twin cubane-type core, (Mo(3)RhCpS(4))(2)(O)(2). The high affinity of the CpRh group for sulfur atoms in 1 seems to be the main driving force for this reaction. The strong Lewis acidity of the CpRh group in intermediate A, [Mo(3)RhCpS(4)(H(2)O)(9)](6+), caused a release of proton from one of the water molecules attached to the molybdenum atoms to give intermediate B, [Mo(3)RhCpS(4)(H(2)O)(8)(OH)](5+). The elimination of two water molecules from two intermediate B molecules, followed by the deprotonation reaction of hydroxo bridges, generated the twin cubane-type cluster 2. The formal oxidation states of rhodium and molybdenum atoms are the same before and after the reaction (i.e., Mo(IV)(3), Rh(III)). The Mo-O-Mo moieties in [2](pts)(8).14H(2)O are nearly linear with a bond angle of 164.3(3) degrees, and the basicity of the bridging oxygen atoms seems to be weak. For this reason, protonation at the bridging oxygen atoms does not occur even in a strongly acidic aqueous solution. The binding energy values of Mo 3d(5/2), Rh 3d(5/2), and C 1s obtained from X-ray photoelectron spectroscopy measurements for [2](pts)(8).14H(2)O are 229.8, 309.3, and 285 eV, respectively. The XPS measurements on the Rh 3d(5/2) binding energy indicate that the oxidation state of Rh is 3+. The binding energy of Mo 3d(5/2) (229.8 eV) compares with that observed for [1](pts)(4).7H(2)O (230.7 eV, Mo 3d(5/2)). A lower energy shift (0.9 eV) is observed in the binding energy of Mo 3d(5/2) for [2](pts)(8).14H(2)O. This energy shift may correspond to the coordination of an oxygen atom having a negative charge to the molybdenum atom.

3.
Rev Gastroenterol Peru ; 24(3): 263-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15483687

RESUMO

Clostridium difficile, a gram-positive anaerobic bacillus dubbed as the difficult clostridium because it resisted early attempts of isolation and culture. After some decades in the darkness, it became famous, when in 1978, a cytotoxin of the C. difficile was found the responsible of the pseudomembranous colitis. We review in this paper aspects of the epidemiology of the C. difficile in health and disease. Also the importance of C. difficile as a cause of nosocomial infections. We review the characteristics of the toxins A and B produced by the pathogenic strains of C. difficile. Finally, clinical aspects of infection with C. difficile in special in the pseudomembranous colitis. The diagnosis, medical therapy, complications and surgical indications are briefly described.


Assuntos
Clostridioides difficile/fisiologia , Enterocolite Pseudomembranosa/microbiologia , Antibacterianos/uso terapêutico , Ensaios Clínicos como Assunto , Enterocolite Pseudomembranosa/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA