Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 2551-2557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685370

RESUMO

Motivation: Proteins involved in liquid-liquid phase separation (LLPS) and membraneless organelles (MLOs) are recognized to be decisive for many biological processes and also responsible for several diseases. The recent explosion of research in the area still lacks tools for the analysis and data integration among different repositories. Currently, there is not a comprehensive and dedicated database that collects all disease-related variations in combination with the protein location, biological role in the MLO, and all the metadata available for each protein and disease. Disease-related protein variants and additional features are dispersed and the user has to navigate many databases, with a different focus, formats, and often not user friendly. Results: We present DisPhaseDB, a database dedicated to disease-related variants of liquid-liquid phase separation proteins. It integrates 10 databases, contains 5,741 proteins, 1,660,059 variants, and 4,051 disease terms. It also offers intuitive navigation and an informative display. It constitutes a pivotal starting point for further analysis, encouraging the development of new computational tools.The database is freely available at http://disphasedb.leloir.org.ar.

2.
Front Vet Sci ; 7: 603622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240967

RESUMO

Interferon lambda (IFN-λ) is an antiviral naturally produced in response to viral infections, with activity on cells of epithelial origin and located in the mucosal surfaces. This localized activity results in reduced toxicity compared to type I IFNs, whose receptors are ubiquitously expressed. IFN-λ has been effective in the therapy of respiratory viral infections, playing a crucial role in potentiating adaptive immune responses that initiate at mucosal surfaces. Human IFN-λ has polymorphisms that may cause differences in the interaction with the specific receptor in the human population. Interestingly, bovine IFN-λ3 has an in silico-predicted higher affinity for the human receptor than its human counterparts, with high identity with different human IFN-λ variants, making it a suitable antiviral therapeutic candidate for human health. Here, we demonstrate that a recombinant bovine IFN-λ (rbIFN-λ) produced in HEK-293 cells is effective in preventing SARS-CoV-2 infection of VERO cells, with an inhibitory concentration 50% (IC50) between 30 and 50 times lower than that of human type I IFN tested here (α2b and ß1a). We also demonstrated the absence of toxicity of rbIFN-λ in human PBMCs and the lack of proinflammatory activity on these cells. Altogether, our results show that rbIFN-λ is as an effective antiviral potentially suitable for COVID-19 therapy. Among other potential applications, rbIFN-λ could be useful to preclude virus dispersion to the lungs and/or to reduce transmission from infected people. Moreover, and due to the non-specific activity of this IFN, it can be potentially effective against other respiratory viruses that may be circulating together with SARS-CoV-2.

3.
Sci Rep ; 10(1): 17962, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087759

RESUMO

Intrinsically disordered proteins/regions (IDPs/IDRs) are crucial components of the cell, they are highly abundant and participate ubiquitously in a wide range of biological functions, such as regulatory processes and cell signaling. Many of their important functions rely on protein interactions, by which they trigger or modulate different pathways. Sequence covariation, a powerful tool for protein contact prediction, has been applied successfully to predict protein structure and to identify protein-protein interactions mostly of globular proteins. IDPs/IDRs also mediate a plethora of protein-protein interactions, highlighting the importance of addressing sequence covariation-based inter-protein contact prediction of this class of proteins. Despite their importance, a systematic approach to analyze the covariation phenomena of intrinsically disordered proteins and their complexes is still missing. Here we carry out a comprehensive critical assessment of coevolution-based contact prediction in IDP/IDR complexes and detail the challenges and possible limitations that emerge from their analysis. We found that the coevolutionary signal is faint in most of the complexes of disordered proteins but positively correlates with the interface size and binding affinity between partners. In addition, we discuss the state-of-art methodology by biological interpretation of the results, formulate evaluation guidelines and suggest future directions of development to the field.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/fisiologia , Sequência de Aminoácidos , Fenômenos Bioquímicos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Front Plant Sci ; 10: 1019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456814

RESUMO

Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.

5.
Plant J ; 99(1): 7-22, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924988

RESUMO

Shade-intolerant plants respond to the decrease in the red (R) to far-red (FR) light ratio (R:FR) occurring under shade by elongating stems and petioles and by re-positioning leaves, in a race to outcompete neighbors for the sunlight resource. In some annual species, the shade avoidance syndrome (SAS) is accompanied by the early induction of flowering. Anticipated flowering is viewed as a strategy to set seeds before the resources become severely limiting. Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa (Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by supplementing with FR light. Low R:FR light produced a classical SAS, with increased internode and petiole lengths, but unexpectedly also with delayed flowering. To understand the molecular mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic approach. The SAS is likely to be mediated by increased expression of msPIF3 and msHB2 in low R:FR light. Constitutive expression of these genes in Arabidopsis led to SAS, including early flowering, strongly suggesting that their roles are conserved. Delayed flowering was likely to be mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative phase under suboptimal light conditions, and thus assure the accumulation of reserves necessary to resume growth after the next season.


Assuntos
Flores/fisiologia , Luz , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago sativa/metabolismo , Medicago sativa/fisiologia
6.
PLoS One ; 10(8): e0136316, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312485

RESUMO

St. Louis encephalitis virus (SLEV) is a re-emerging arbovirus in South America. In 2005, an encephalitis outbreak caused by SLEV was reported in Argentina. The reason for the outbreak remains unknown, but may have been related to virological factors, changes in vectors populations, avian amplifying hosts, and/or environmental conditions. The main goal of this study was to characterize the complete genome of epidemic and non-epidemic SLEV strains from Argentina. Seventeen amino acid changes were detected; ten were non-conservative and located in proteins E, NS1, NS3 and NS5. Phylogenetic analysis showed two major clades based on geography: the North America and northern Central America (NAnCA) clade and the South America and southern Central America (SAsCA) clade. Interestingly, the presence of SAsCA genotype V SLEV strains in the NAnCA clade was reported in California, Florida and Texas, overlapping with known bird migration flyways. This work represents the first step in understanding the molecular mechanisms underlying virulence and biological variation among SLEV strains.


Assuntos
Doenças Transmissíveis Emergentes/genética , Vírus da Encefalite de St. Louis , Encefalite de St. Louis/genética , Genoma Viral , Filogenia , Proteínas Virais/genética , Animais , Argentina , Chlorocebus aethiops , Doenças Transmissíveis Emergentes/epidemiologia , Vírus da Encefalite de St. Louis/genética , Vírus da Encefalite de St. Louis/patogenicidade , Encefalite de St. Louis/epidemiologia , Genótipo , Humanos , Estados Unidos/epidemiologia , Células Vero
7.
Nucleic Acids Res ; 43(W1): W320-5, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26032772

RESUMO

Interprotein contact prediction using multiple sequence alignments (MSAs) is a useful approach to help detect protein-protein interfaces. Different computational methods have been developed in recent years as an approximation to solve this problem. However, as there are discrepancies in the results provided by them, there is still no consensus on which is the best performing methodology. To address this problem, I-COMS (interprotein COrrelated Mutations Server) is presented. I-COMS allows to estimate covariation between residues of different proteins by four different covariation methods. It provides a graphical and interactive output that helps compare results obtained using different methods. I-COMS automatically builds the required MSA for the calculation and produces a rich visualization of either intraprotein and/or interprotein covariating positions in a circos representation. Furthermore, comparison between any two methods is available as well as the overlap between any or all four methodologies. In addition, as a complementary source of information, a matrix visualization of the corresponding scores is made available and the density plot distribution of the inter, intra and inter+intra scores are calculated. Finally, all the results can be downloaded (including MSAs, scores and graphics) for comparison and visualization and/or for further analysis.


Assuntos
Mutação , Mapeamento de Interação de Proteínas/métodos , Software , Algoritmos , Internet , Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
8.
Biotechnol Res Int ; 2013: 383646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533783

RESUMO

Designing degenerate PCR primers for templates of unknown nucleotide sequence may be a very difficult task. In this paper, we present a new method to design degenerate primers, implemented in family-specific degenerate primer design (FAS-DPD) computer software, for which the starting point is a multiple alignment of related amino acids or nucleotide sequences. To assess their efficiency, four different genome collections were used, covering a wide range of genomic lengths: Arenavirus (10 × 10(4) nucleotides), Baculovirus (0.9 × 10(5) to 1.8 × 10(5) bp), Lactobacillus sp. (1 × 10(6) to 2 × 10(6) bp), and Pseudomonas sp. (4 × 10(6) to 7 × 10(6) bp). In each case, FAS-DPD designed primers were tested computationally to measure specificity. Designed primers for Arenavirus and Baculovirus were tested experimentally. The method presented here is useful for designing degenerate primers on collections of related protein sequences, allowing detection of new family members.

9.
BMC Biotechnol ; 12: 80, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23121996

RESUMO

BACKGROUND: Arenavirus matrix protein Z plays an important role in virus budding and is able to generate enveloped virus-like-particles (VLPs) in absence of any other viral proteins. In these VLPs, Z protein is associated to the plasma membrane inner surface by its myristoyl residue. Budding induction and vesicle formation properties can be exploited to generate enveloped VLPs platform. These structures can be designed to carry specific antigen in the inner side or on the surface of VLPs.Vaccines based on VLPs are a highly effective type of subunit vaccines that mimic the overall structure of virus particles in absence of viral nucleic acid, being noninfectious.In this work we assayed the capacity of Junin Z protein to produce VLPs carrying the green fluorescent protein (eGFP), as a model antigen. RESULTS: In this report the Junin Z protein ability to produce VLPs from 293T cells and its capacity to deliver a specific antigen (eGFP) fused to Z was evaluated. Confocal microscopy showed a particular membrane bending in cells expressing Z and a spot welded distribution in the cytoplasm. VLPs were detected by TEM (transmission electron microscopy) and were purified from cell supernatant. The proteinase protection assay demonstrated the VLPs integrity and the absence of degradation of the fused antigen, thus indicating its internal localization. Finally, immunization of mice with purified VLPs produced high titres of anti-eGFP antibodies compared to the controls. CONCLUSIONS: It was proved that VLPs can be generated from cells transfected with a fusion Junin virus Z-eGFP protein in absence of any other viral protein, and the capacity of Z protein to support fusions at the C-terminal, without impairing its budding activity, allowing vehiculization of specific antigens into VLPs.


Assuntos
Antígenos/metabolismo , Vírus Junin/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Animais , Antígenos/genética , Antígenos/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transfecção , Proteínas Virais/genética , Proteínas Virais/imunologia , Vírion/imunologia , Vírion/ultraestrutura
10.
J Virol ; 86(22): 12069-79, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933288

RESUMO

The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae.


Assuntos
Baculoviridae/genética , Genes Virais , Algoritmos , Motivos de Aminoácidos , Biologia Computacional/métodos , DNA Viral/genética , Bases de Dados Genéticas , Evolução Molecular , Genoma Viral , Modelos Genéticos , Modelos Estatísticos , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas Virais/genética , Vírion/genética
11.
Virus Res ; 160(1-2): 150-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21689697

RESUMO

The Argentine Hemorrhagic Fever, an endemic disease present in a much of Argentina, is caused by the Junín virus (JUNV). Currently, there are sequences available from several strains of this virus, like those belonging to the vaccine lineage (XJ13, XJ#44 and Candid#1), as well as MC2 (rodent isolate) and IV4454 (human isolate). In this article, we report sequence information on two fragments of genomic segment S of viral isolates from the endemic area. A Nested-RT-PCR was used to amplify discrete genomic regions of 13 isolates of rodent and human origin. The bioinformatics studies revealed a great homogeneity of sequences among the JUNV isolates. The phylogenetic classification showed greater evolutionary distance between the old world arenaviruses (Lassa and LCM virus) than between the new world arenaviruses (JUNV and Machupo virus).


Assuntos
Infecções por Arenaviridae/veterinária , Infecções por Arenaviridae/virologia , Variação Genética , Vírus Junin/classificação , Vírus Junin/isolamento & purificação , Doenças dos Roedores/virologia , Animais , Argentina , Análise por Conglomerados , Humanos , Vírus Junin/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Roedores , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
12.
Virus Genes ; 40(3): 320-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20148301

RESUMO

The Junín virus strain Candid#1 was developed as a live attenuated vaccine for Argentine hemorrhagic fever. In this article, we report sequence information of the L and S RNAs of Junín virus Candid#1 and XJ#44 strains, and show the comparisons with the XJ13 wild-type strain and with other Junín virus strains, like Romero, IV4454 and MC2 strains, and other closely and distantly related arenaviruses. Comparisons of the nucleotide and amino acid sequences of all genes of three strains from the same vaccine genealogy, revealed different point mutations that could be associated with the attenuated phenotype. A 91% of the mutations found are consistent with a hypothesis of progressive attenuation of virulence from XJ13 to XJ#44 and to Candid#1; 39% of mutations were observed in XJ#44 and conserved in Candid#1, while another 52% of the mutations appeared only in Candid#1 strain. The remaining 9% corresponded to reverse mutations in the L gene. In summary, the present work shows a set of mutations that could be related to the virulence attenuation phenomenon. This information will serve as a starting point to study this biological phenomenon, provided that a reverse genetics system for Junín virus is developed to allow the generation of infectious virions with specific mutations.


Assuntos
Vírus Junin/genética , Vírus Junin/patogenicidade , Vacinas Virais , Infecções por Arenaviridae/prevenção & controle , Sequência de Bases , Análise por Conglomerados , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Mutação Puntual , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Vacinas Atenuadas
13.
Virus Genes ; 32(1): 37-41, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16525733

RESUMO

Junin virus strain Candid #1 was developed as a live attenuated vaccine for Argentine haemorrhagic fever. In this paper, we report the nucleotide sequences of L RNA of Candid #1 and examine the relationship to its more virulent ancestors Junin virus XJ#44 and XJ 13 (prototype) and other closely and distantly related arenaviruses. Comparisons of the nucleotide and amino acid sequences of L and Z genes of Candid #1 and its progenitor strains revealed twelve point mutations in the L polypeptide that are unique to the vaccine strain. These changes could be provisionally associated with the attenuated phenotype. In contrast, Z ORF was completely conserved among all strains.


Assuntos
Vírus Junin/genética , Vírus Junin/imunologia , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/prevenção & controle , Genoma Viral , Cobaias , Humanos , Vírus Junin/patogenicidade , Camundongos , Dados de Sequência Molecular , Filogenia , Mutação Puntual , RNA Viral/genética , Especificidade da Espécie , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas Virais/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA