Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050602

RESUMO

Industrial production and manufacturing systems require automation, reliability, as well as low-latency intelligent control. Industrial Internet of Things (IIoT) is an emerging paradigm that enables precise, low latency, intelligent computing, supported by cutting-edge technology such as edge computing and machine learning. IIoT provides some of the essential building blocks to drive manufacturing systems to the next level of productivity, efficiency, and safety. Hardware failures and faults in IIoT are critical challenges to be faced. These anomalies can cause accidents and financial loss, affect productivity, and mobilize staff by producing false alarms. In this context, this article proposes a framework called Detection and Alert State for Industrial Internet of Things Faults (DASIF). The DASIF framework applies edge computing to execute highly precise and low latency machine learning models to detect industrial IoT faults and autonomously enforce an adaptive communication policy, triggering a state of alert in case of fault detection. The state of alert is a pre-stage countermeasure where the network increases communication reliability by using data replication combined with multiple-path communication. When the system is under alert, it can process a fine-grained inspection of the data for efficient decison-making. DASIF performance was obtained considering a simulation of the IIoT network and a real petrochemical dataset.

2.
Sensors (Basel) ; 21(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696070

RESUMO

The high demand for data processing in web applications has grown in recent years due to the increased computing infrastructure supply as a service in a cloud computing ecosystem. This ecosystem offers benefits such as broad network access, elasticity, and resource sharing, among others. However, properly exploiting these benefits requires optimized provisioning of computational resources in the target infrastructure. Several studies in the literature improve the quality of this management, which involves enhancing the scalability of the infrastructure, either through cost management policies or strategies aimed at resource scaling. However, few studies adequately explore performance evaluation mechanisms. In this context, we present the MoHRiPA-Management of Hybrid Resources in Private cloud Architecture. MoHRiPA has a modular design encompassing scheduling algorithms, virtualization tools, and monitoring tools. The proposed architecture solution allows assessing the overall system's performance by using complete factorial planning to identify the general behavior of architecture under high demand of requests. It also evaluates workload behavior, the number of virtualized resources, and provides an elastic resource manager. A composite metric is also proposed and adopted as a criterion for resource scaling. This work presents a performance evaluation by using formal techniques, which analyses the scheduling algorithms of architecture and the experiment bottlenecks analysis, average response time, and latency. In summary, the proposed MoHRiPA mapping resources algorithm (HashRefresh) showed significant improvement results than the analyzed competitor, decreasing about 7% percent in the uniform average compared to ListSheduling (LS).


Assuntos
Computação em Nuvem , Ecossistema , Algoritmos , Carga de Trabalho
3.
Sensors (Basel) ; 19(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443250

RESUMO

Transport authorities are employing advanced traffic management system (ATMS) to improve vehicular traffic management efficiency. ATMS currently uses intelligent traffic lights and sensors distributed along the roads to achieve its goals. Furthermore, there are other promising technologies that can be applied more efficiently in place of the abovementioned ones, such as vehicular networks and 5G. In ATMS, the centralized approach to detect congestion and calculate alternative routes is one of the most adopted because of the difficulty of selecting the most appropriate vehicles in highly dynamic networks. The advantage of this approach is that it takes into consideration the scenario to its full extent at every execution. On the other hand, the distributed solution needs to previously segment the entire scenario to select the vehicles. Additionally, such solutions suggest alternative routes in a selfish fashion, which can lead to secondary congestions. These open issues have inspired the proposal of a distributed system of urban mobility management based on a collaborative approach in vehicular social networks (VSNs), named SOPHIA. The VSN paradigm has emerged from the integration of mobile communication devices and their social relationships in the vehicular environment. Therefore, social network analysis (SNA) and social network concepts (SNC) are two approaches that can be explored in VSNs. Our proposed solution adopts both SNA and SNC approaches for alternative route-planning in a collaborative way. Additionally, we used dynamic clustering to select the most appropriate vehicles in a distributed manner. Simulation results confirmed that the combined use of SNA, SNC, and dynamic clustering, in the vehicular environment, have great potential in increasing system scalability as well as improving urban mobility management efficiency.

4.
Sensors (Basel) ; 18(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127250

RESUMO

In the traditional approach for centrality measures, also known as sociocentric, a network node usually requires global knowledge of the network topology in order to evaluate its importance. Therefore, it becomes difficult to deploy such an approach in large-scale or highly dynamic networks. For this reason, another concept known as egocentric has been introduced, which analyses the social environment surrounding individuals (through the ego-network). In other words, this type of network has the benefit of using only locally available knowledge of the topology to evaluate the importance of a node. It is worth emphasizing that in this approach, each network node will have a sub-optimal accuracy. However, such accuracy may be enough for a given purpose, for instance, the vehicle selection mechanism (VSM) that is applied to find, in a distributed fashion, the best-ranked vehicles in the network after each topology change. In order to confirm that egocentric measures can be a viable alternative for implementing a VSM, in particular, a case study was carried out to validate the effectiveness and viability of that mechanism for a distributed information management system. To this end, we used the egocentric betweenness measure as a selection mechanism of the most appropriate vehicle to carry out the tasks of information aggregation and knowledge generation. Based on the analysis of the performance results, it was confirmed that a VSM is extremely useful for VANET applications, and two major contributions of this mechanism can be highlighted: (i) reduction of bandwidth consumption; and (ii) overcoming the issue of highly dynamic topologies. Another contribution of this work is a thorough study by implementing and evaluating how well egocentric betweenness performs in comparison to the sociocentric measure in VANETs. Evaluation results show that the use of the egocentric betweenness measure in highly dynamic topologies has demonstrated a high degree of similarity compared to the sociocentric approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA