Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Leukoc Biol ; 116(4): 779-792, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652699

RESUMO

The mammalian target of rapamycin (mTOR) pathway plays a key role in determining immune cells function through modulation of their metabolic status. By specific deletion of Rictor in CD11c+ myeloid cells (referred to here as CD11cRicΔ/Δ), we investigated the role of mTOR complex 2 (mTORC2) signaling in dendritic cells (DCs) function in mice. We showed that upon dextran sulfate sodium-induced colitis, the lack of mTORC2 signaling CD11c+ cells diminishes the colitis score and abrogates DC migration to the mesenteric lymph nodes, thereby diminishing the infiltration of T helper 17 cells in the lamina propria and subsequent inflammation. These findings corroborate with the abrogation of cytoskeleton organization and the decreased activation of Rac1 and Cdc42 GTPases observed in CD11c+-mTORC2-deficient cells. Meta-analysis on colonic samples from ulcerative colitis patients revealed increased gene expression of proinflammatory cytokines, which coincided with augmented expression of the mTOR pathway, a positive correlation between the DC marker ITGAX and interleukin-6, the expression of RICTOR, and CDC42. Together, this work proposes that targeting mTORC2 on DCs offers a key to hamper inflammatory responses, and this way, ameliorates the progression and severity of intestinal inflammatory diseases.


Assuntos
Movimento Celular , Colite , Células Dendríticas , Sulfato de Dextrana , Alvo Mecanístico do Complexo 2 de Rapamicina , Células Mieloides , Transdução de Sinais , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Colite/patologia , Colite/induzido quimicamente , Colite/imunologia , Células Mieloides/metabolismo , Células Mieloides/imunologia , Sulfato de Dextrana/toxicidade , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Antígeno CD11c/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Knockout , Neuropeptídeos , Antígenos CD11
2.
Inflamm Bowel Dis ; 26(5): 697-708, 2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-31819985

RESUMO

BACKGROUND: The gut microbiota is a key element to support host homeostasis and the development of the immune system. The relationship between the microbiota and immunity is a 2-way road, in which the microbiota contributes to the development/function of immune cells and immunity can affect the composition of microbes. In this context, natural killer T cells (NKT cells) are distinct T lymphocytes that play a role in gut immunity and are influenced by gut microbes. In our work, we investigated the involvement of invariant NKT cells (iNKT) in intestinal homeostasis. RESULTS: We found that iNKT-deficient mice (iNKT-KO) had reduced levels of fecal IgA and an altered composition of the gut microbiota, with increased Bacteroidetes. The absence of iNKT cells also affected TGF-ß1 levels and plasma cells, which were significantly reduced in knockout (KO) mice. In addition, when submitted to dextran sodium sulfate colitis, iNKT-KO mice had worsening of colitis when compared with wild-type (WT) mice. To further address iNKT cell contribution to intestinal homeostasis, we adoptively transferred iNKT cells to KO mice, and they were submitted to colitis. Transfer of iNKT cells improved colitis and restored fecal IgA levels and gut microbiota. CONCLUSIONS: Our results indicate that intestinal NKT cells are important modulators of intestinal homeostasis and that gut microbiota composition may be a potential target in the management of inflammatory bowel diseases.


Assuntos
Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Imunoglobulina A/análise , Intestinos/imunologia , Células T Matadoras Naturais/imunologia , Animais , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Fezes/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Toxicol Rep ; 5: 512-520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854623

RESUMO

Environmental and Occupational pollution has been extensively studied because of its serious implications on the human health. Formaldehyde (FA) is a pollutant widely employed in several industries and also in anatomy, pathology and histology laboratories. Studies have shown the correlation between FA exposure and development or worsening of asthma. However, the effect of FA exposure on the pulmonary fibrosis (PF) is unknown. PF is a progressive and chronic lung disease with high incidence and considerable morbidity and mortality. Few studies have shown a worsening of PF after pollutants exposure such as ozone and nitrogen dioxide. Therefore, our objective was to assess the effects of FA on the PF. Male mice C57BL6 were treated or not with bleomycin (1,5 U/kg) and exposed or not to FA inhalation (0.92 mg/m3, 1 h/day, 5 days/week during 2 weeks). Non-manipulated mice were used as control. Our data showed that FA exposure in fibrotic mice increased the number of granulocytes in the bronchoalveolar lavage followed by elevated levels of interleukin 1 beta and interleukin 17. In addition, FA exposure in fibrotic mice enhanced the gene expression of C-X-C motif chemokine ligand 1 (CXCL1) and tumor necrosis factor alpha (TNF-α) in the lung. We also showed an increase in the collagen production, while lung elastance was reduced. No differences were found in the mucus production, oedema and interstitial thickening in the lung tissue of fibrotic mice after FA exposure. In conclusion our study showed that FA exposure aggravates the lung neutrophils influx and collagen production, but did not alter the lung elastance, mucus production, oedema and interstitial tickening. This work contributes to understand the effects of pollution in the development of PF.

4.
Inflammopharmacology ; 26(1): 251-260, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29063489

RESUMO

Inflammatory bowel diseases (IBDs) affect millions of people worldwide and their frequencies in developed countries have increased since the twentieth century. In this context, there is an intensive search for therapies that modulate inflammation and provide tissue regeneration in IBDs. Recently, the immunomodulatory activity of adipose tissue-derived mesenchymal stromal cells (ADMSCs) has been demonstrated to play an important role on several immune cells in different conditions of inflammatory and autoimmune diseases. In this study, we explored the immunomodulatory potential of ADMSC in a classical model of DSS-induced colitis. First, we found that treatment of mice with ADMSC ameliorated the severity of DSS-induced colitis, reducing colitis pathological score and preventing colon shortening. Moreover, a prominent reduction of pro-inflammatory cytokines levels (i.e., IFN-γ, TNF-α, IL-6 and MCP-1) was observed in the colon of animals treated with ADMSC. We also observed a significant reduction in the frequencies of macrophages (F4/80+CD11b+) and dendritic cells (CD11c+CD103+) in the intestinal lamina propria of ADMSC-treated mice. Finally, we detected the up-regulation of immunoregulatory-associated molecules in intestine of mice treated with ADMSCs (i.e., elevated arginase-1 and IL-10). Thus, this present study demonstrated that ADMSC modulates the overall gut inflammation (cell activation and recruitment) in experimental colitis, providing support to the further development of new strategies in the treatment of intestinal diseases.


Assuntos
Colite/metabolismo , Colite/patologia , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 7(1): 12670, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978926

RESUMO

Sepsis is a severe disease with a high mortality index and it is responsible for the development of acute lung injury (ALI). We evaluated the effects of light-emitting diode (LED) on ALI induced by sepsis. Balb-c mice were injected with lipopolysaccharide or saline and then irradiated or not with red LED on their tracheas and lungs for 150 s, 2 and 6 h after LPS injections. The parameters were investigated 24 h after the LPS injections. Red LED treatment reduced neutrophil influx and the levels of interleukins 1ß, 17 A and, tumor necrosis factor-α; in addition to enhanced levels of interferon γ in the bronchoalveolar fluid. Moreover, red LED treatment enhanced the RNAm levels of IL-10 and IFN-γ. It also partially reduced the elevated oxidative burst and enhanced apoptosis, but it did not alter the translocation of nuclear factor κB, the expression of toll-like receptor 4 (TLR4), as well as, oedema or mucus production in their lung tissues. Together, our data has shown the beneficial effects of short treatment with LED on ALI that are caused by gram negative bacterial infections. It is suggested that LED applications are an inexpensive and non-invasive additional treatment for sepsis.


Assuntos
Lesão Pulmonar Aguda/terapia , Luz , Sepse/terapia , Lesão Pulmonar Aguda/etiologia , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Interleucina-17/genética , Interleucina-1beta/genética , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , Sepse/induzido quimicamente , Sepse/complicações , Transdução de Sinais/efeitos da radiação , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
6.
World J Hepatol ; 9(23): 979-989, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28878863

RESUMO

Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

7.
Microb Drug Resist ; 23(1): 56-62, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27328205

RESUMO

The administration of antimicrobial agents leads to an ecological imbalance of the host-microorganisms relationship, and it causes a rapid and significant reduction in the microbial diversity. The aim of the current study was to evaluate the impact of antibiotic therapy on intestinal microbiota of children between 3 and 12 years of age. The fecal samples were collected from hospitalized children (n = 31) and from healthy untreated children (n = 30). The presence of bacteria and their quantities were assessed by culture-based methods and quantitative polymerase chain reaction (qPCR). By culture method, in the children receiving antibiotics, a low recovery of Bifidobacterium spp. (54.8%), Bacteroides spp./Parabacteroides spp. (54.8%), Clostridium spp. (35.5%), and Escherichia coli (74.2%) was observed compared with the children without antibiotic therapy (100%, 80%, 63.3%, and 86.6%, respectively). By qPCR, the children receiving antibiotics showed a lower copy number for all microorganisms, except to Lactobacillus spp. (p = 0.0092). In comparison to the nontreated children, the antibiotic-treated children showed a significantly lower copy number of Bifidobacterium spp. (p = 0.0002), Clostridium perfringens (p < 0.0001), E. coli (p = 0.0268), Methanobrevibacter smithii (p = 0.0444), and phylum Firmicutes (p = 0.0009). In conclusion, our results obtained through qualitative and quantitative analyses, demonstrate that antibiotic therapy affect the intestinal microbiome of children.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , DNA Bacteriano/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroides/efeitos dos fármacos , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Bacteroides/isolamento & purificação , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Estudos de Casos e Controles , Criança , Pré-Escolar , Clostridium/efeitos dos fármacos , Clostridium/genética , Clostridium/crescimento & desenvolvimento , Clostridium/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Feminino , Firmicutes/efeitos dos fármacos , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/genética , Humanos , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Masculino , Methanobrevibacter/efeitos dos fármacos , Methanobrevibacter/genética , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/isolamento & purificação
8.
J Exp Med ; 213(7): 1223-39, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27325889

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that is triggered by both genetic and environmental factors, resulting in the destruction of pancreatic ß cells. The disruption of the intestinal epithelial barrier and consequent escape of microbial products may be one of these environmental triggers. However, the immune receptors that are activated in this context remain elusive. We show here that during streptozotocin (STZ)-induced T1D, the nucleotide-binding oligomerization domain containing 2 (NOD2), but not NOD1, participates in the pathogenesis of the disease by inducing T helper 1 (Th1) and Th17 cells in the pancreatic LNs (PLNs) and pancreas. Additionally, STZ-injected wild-type (WT) diabetic mice displayed an altered gut microbiota compared with vehicle-injected WT mice, together with the translocation of bacteria to the PLNs. Interestingly, WT mice treated with broad-spectrum antibiotics (Abx) were fully protected from STZ-induced T1D, which correlated with the abrogation of bacterial translocation to the PLNs. Notably, when Abx-treated STZ-injected WT mice received the NOD2 ligand muramyl dipeptide, both hyperglycemia and the proinflammatory immune response were restored. Our results demonstrate that the recognition of bacterial products by NOD2 inside the PLNs contributes to T1D development, establishing a new putative target for intervention during the early stages of the disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Linfonodos , Proteína Adaptadora de Sinalização NOD2/imunologia , Pâncreas , Animais , Translocação Bacteriana/genética , Translocação Bacteriana/imunologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 1/patologia , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Masculino , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/genética , Pâncreas/imunologia , Pâncreas/microbiologia , Pâncreas/patologia
9.
Front Immunol ; 7: 54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925061

RESUMO

The mammalian gastrointestinal tract harbors a diverse microbial community with which dynamic interactions have been established over millennia of coevolution. Commensal bacteria and their products are sensed by innate receptors expressed in gut epithelia and in gut-associated immune cells, thereby promoting the proper development of mucosal immune system and host homeostasis. Many studies have demonstrated that host-microbiota interactions play a key role during local and systemic immunity. Therefore, this review will focus on how innate sensing of the gut microbiota and their metabolites through inflammasome and toll-like receptors impact the modulation of a distinct set of inflammatory and autoimmune diseases. We believe that a better understanding of the fine-tuning that governs host-microbiota interactions will further improve common prophylactic and therapeutic applications.

10.
Braz J Microbiol ; 46(4): 1135-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691472

RESUMO

Colorectal carcinoma is considered the fourth leading cause of cancer deaths worldwide. Several microorganisms have been associated with carcinogenesis, including Enterococcus spp., Helicobacter pylori, enterotoxigenic Bacteroides fragilis, pathogenic E. coli strains and oral Fusobacterium. Here we qualitatively and quantitatively evaluated the presence of oral and intestinal microorganisms in the fecal microbiota of colorectal cancer patients and healthy controls. Seventeen patients (between 49 and 70 years-old) visiting the Cancer Institute of the Sao Paulo State were selected, 7 of whom were diagnosed with colorectal carcinoma. Bacterial detection was performed by qRT-PCR. Although all of the tested bacteria were detected in the majority of the fecal samples, quantitative differences between the Cancer Group and healthy controls were detected only for F. nucleatum and C. difficile. The three tested oral microorganisms were frequently observed, suggesting a need for furthers studies into a potential role for these bacteria during colorectal carcinoma pathogenesis. Despite the small number of patients included in this study, we were able to detect significantly more F. nucleatum and C. difficile in the Cancer Group patients compared to healthy controls, suggesting a possible role of these bacteria in colon carcinogenesis. This finding should be considered when screening for colorectal cancer.


Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/complicações , Neoplasias Colorretais/complicações , Infecções por Fusobacterium/complicações , Fusobacterium nucleatum/isolamento & purificação , Microbioma Gastrointestinal , Idoso , Brasil/epidemiologia , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Feminino , Infecções por Fusobacterium/epidemiologia , Infecções por Fusobacterium/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
11.
Braz J Microbiol ; 46(4): 1141-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691473

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is an important part of the human and animal intestinal microbiota and is commonly associated with diarrhea. ETBF strains produce an enterotoxin encoded by the bft gene located in the B. fragilis pathogenicity island (BfPAI). Non-enterotoxigenic B. fragilis (NTBF) strains lack the BfPAI and usually show two different genetic patterns, II and III, based on the absence or presence of a BfPAI-flanking region, respectively. The incidence of ETBF and NTBF strains in fecal samples isolated from children without acute diarrhea or any other intestinal disorders was determined. All 84 fecal samples evaluated were B. fragilis-positive by PCR, four of them harbored the bft gene, 27 contained the NTBF pattern III DNA sequence, and 52 were considered to be NTBF pattern II samples. One sample was positive for both ETBF and NTBF pattern III DNA sequences. All 19 B. fragilis strains isolated by the culture method were bft-negative, 9 belonged to pattern III and 10 to pattern II. We present an updated overview of the ETBF and NTBF incidence in the fecal microbiota of children from Sao Paulo City, Brazil.


Assuntos
Toxinas Bacterianas/genética , Infecções por Bacteroides/microbiologia , Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Fezes/microbiologia , Genótipo , Metaloendopeptidases/genética , Animais , Infecções por Bacteroides/epidemiologia , Bacteroides fragilis/classificação , Brasil/epidemiologia , Criança , Pré-Escolar , DNA Bacteriano/genética , Feminino , Humanos , Incidência , Masculino , Tipagem Molecular , Reação em Cadeia da Polimerase
12.
Braz. j. microbiol ; Braz. j. microbiol;46(4): 1141-1145, Oct.-Dec. 2015. tab
Artigo em Inglês | LILACS | ID: lil-769648

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is an important part of the human and animal intestinal microbiota and is commonly associated with diarrhea. ETBF strains produce an enterotoxin encoded by the bft gene located in the B. fragilis pathogenicity island (BfPAI). Non-enterotoxigenic B. fragilis (NTBF) strains lack the BfPAI and usually show two different genetic patterns, II and III, based on the absence or presence of a BfPAI-flanking region, respectively. The incidence of ETBF and NTBF strains in fecal samples isolated from children without acute diarrhea or any other intestinal disorders was determined. All 84 fecal samples evaluated were B. fragilis-positive by PCR, four of them harbored the bft gene, 27 contained the NTBF pattern III DNA sequence, and 52 were considered to be NTBF pattern II samples. One sample was positive for both ETBF and NTBF pattern III DNA sequences. All 19 B. fragilis strains isolated by the culture method were bft-negative, 9 belonged to pattern III and 10 to pattern II. We present an updated overview of the ETBF and NTBF incidence in the fecal microbiota of children from Sao Paulo City, Brazil.


Assuntos
Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Toxinas Bacterianas/genética , Infecções por Bacteroides/microbiologia , Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Fezes/microbiologia , Genótipo , Metaloendopeptidases/genética , Infecções por Bacteroides/epidemiologia , Bacteroides fragilis/classificação , Brasil/epidemiologia , DNA Bacteriano/genética , Incidência , Tipagem Molecular , Reação em Cadeia da Polimerase
13.
Braz. j. microbiol ; Braz. j. microbiol;46(4): 1135-1140, Oct.-Dec. 2015. tab
Artigo em Inglês | LILACS | ID: lil-769673

RESUMO

Abstract Colorectal carcinoma is considered the fourth leading cause of cancer deaths worldwide. Several microorganisms have been associated with carcinogenesis, including Enterococcus spp., Helicobacter pylori, enterotoxigenic Bacteroides fragilis, pathogenic E. coli strains and oral Fusobacterium. Here we qualitatively and quantitatively evaluated the presence of oral and intestinal microorganisms in the fecal microbiota of colorectal cancer patients and healthy controls. Seventeen patients (between 49 and 70 years-old) visiting the Cancer Institute of the Sao Paulo State were selected, 7 of whom were diagnosed with colorectal carcinoma. Bacterial detection was performed by qRT-PCR. Although all of the tested bacteria were detected in the majority of the fecal samples, quantitative differences between the Cancer Group and healthy controls were detected only for F. nucleatum and C. difficile. The three tested oral microorganisms were frequently observed, suggesting a need for furthers studies into a potential role for these bacteria during colorectal carcinoma pathogenesis. Despite the small number of patients included in this study, we were able to detect significantly more F. nucleatum and C. difficile in the Cancer Group patients compared to healthy controls, suggesting a possible role of these bacteria in colon carcinogenesis. This finding should be considered when screening for colorectal cancer.


Assuntos
Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Clostridium/complicações , Clostridioides difficile/isolamento & purificação , Neoplasias Colorretais/complicações , Infecções por Fusobacterium/complicações , Fusobacterium nucleatum/isolamento & purificação , Microbioma Gastrointestinal , Brasil/epidemiologia , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Infecções por Fusobacterium/epidemiologia , Infecções por Fusobacterium/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
14.
Braz. J. Microbiol. ; 46(4): 1135-1140, Oct.-Dec. 2015. tab
Artigo em Inglês | VETINDEX | ID: vti-481719

RESUMO

Abstract Colorectal carcinoma is considered the fourth leading cause of cancer deaths worldwide. Several microorganisms have been associated with carcinogenesis, including Enterococcus spp., Helicobacter pylori, enterotoxigenic Bacteroides fragilis, pathogenic E. coli strains and oral Fusobacterium. Here we qualitatively and quantitatively evaluated the presence of oral and intestinal microorganisms in the fecal microbiota of colorectal cancer patients and healthy controls. Seventeen patients (between 49 and 70 years-old) visiting the Cancer Institute of the Sao Paulo State were selected, 7 of whom were diagnosed with colorectal carcinoma. Bacterial detection was performed by qRT-PCR. Although all of the tested bacteria were detected in the majority of the fecal samples, quantitative differences between the Cancer Group and healthy controls were detected only for F. nucleatum and C. difficile. The three tested oral microorganisms were frequently observed, suggesting a need for furthers studies into a potential role for these bacteria during colorectal carcinoma pathogenesis. Despite the small number of patients included in this study, we were able to detect significantly more F. nucleatum and C. difficile in the Cancer Group patients compared to healthy controls, suggesting a possible role of these bacteria in colon carcinogenesis. This finding should be considered when screening for colorectal cancer.(AU)


Assuntos
Humanos , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Estudos de Avaliação como Assunto/prevenção & controle , Estudos de Avaliação como Assunto
15.
Braz. J. Microbiol. ; 46(4): 1141-1145, Oct.-Dec. 2015. tab
Artigo em Inglês | VETINDEX | ID: vti-13482

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is an important part of the human and animal intestinal microbiota and is commonly associated with diarrhea. ETBF strains produce an enterotoxin encoded by the bft gene located in the B. fragilis pathogenicity island (BfPAI). Non-enterotoxigenic B. fragilis (NTBF) strains lack the BfPAI and usually show two different genetic patterns, II and III, based on the absence or presence of a BfPAI-flanking region, respectively. The incidence of ETBF and NTBF strains in fecal samples isolated from children without acute diarrhea or any other intestinal disorders was determined. All 84 fecal samples evaluated were B. fragilis-positive by PCR, four of them harbored the bft gene, 27 contained the NTBF pattern III DNA sequence, and 52 were considered to be NTBF pattern II samples. One sample was positive for both ETBF and NTBF pattern III DNA sequences. All 19 B. fragilis strains isolated by the culture method were bft-negative, 9 belonged to pattern III and 10 to pattern II. We present an updated overview of the ETBF and NTBF incidence in the fecal microbiota of children from Sao Paulo City, Brazil.(AU)


Assuntos
Humanos , Criança , Bacteroides fragilis , Fezes , Firmicutes , Reação em Cadeia da Polimerase
16.
JMM Case Rep ; 1(4): e000001, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28663801

RESUMO

INTRODUCTION: Escherichia coli causes gastroenteritis in humans and animals. CASE PRESENTATION: In this study, both Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic E. coli (EPEC) strains were identified in a stool sample from a healthy child, and they were serotyped as Shiga toxin-producing E. coli (STEC) ONT : H19 and atypical enteropathogenic E. coli (EPEC) O37 : H45. CONCLUSION: This is the first report, to our knowledge, of a concomitant presence of diarrhoeagenic E. coli (DEC) strains in an asymptomatic child. None of the microorganisms was able to produce diarrhoea, maybe because they were transient bacteria or because of the good immune status of the child. Attention should be paid to this result and it could be of interest in vaccine prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA