Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Plant Res ; 135(1): 81-92, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34674075

RESUMO

Hybridization and polyploidization are major forces in plant evolution and potatoes are not an exception. It is proposed that the proliferation of Long Terminal Repeat-retrotransposons (LTR-RT) is related to genome reorganization caused by hybridization and/or polyploidization. The main purpose of the present work was to evaluate the effect of interspecific hybridization and polyploidization on the activation of LTR-RT. We evaluated the proliferation of putative active LTR-RT in a diploid hybrid between the cultivated potato Solanum tuberosum and the wild diploid potato species S. kurtzianum, allotetraploid lines derived from this interspecific hybrid and S. kurtzianum autotetraploid lines (ktz-autotetraploid) using the S-SAP (sequence-specific amplified polymorphism) technique and normalized copy number determination by qPCR. Twenty-nine LTR-RT copies were activated in the hybrid and present in the allotetraploid lines. Major LTR-RT activity was detected in Copia-27, Copia-12, Copia-14 and, Gypsy-22. According to our results, LTR-RT copies were activated principally in the hybrid, there was no activation in allotetraploid lines and only one copy was activated in the autotetraploid.


Assuntos
Retroelementos , Solanum tuberosum , Genoma de Planta/genética , Hibridização Genética , Filogenia , Retroelementos/genética , Solanum tuberosum/genética , Sequências Repetidas Terminais/genética
2.
Plant Sci ; 308: 110911, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034868

RESUMO

Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing. Within the distribution of S. kurtzianum, genotypes could be adapted to differential precipitation regimes. The aim of this work was to evaluate responses of three S. kurtzianum genotypes collected at 1100 (G1), 1900 (G2) and 2100 m a.s.l. (G3) to moderate and severe WD. Treatments were imposed since flowering and lasted 36 days. Yield components, morpho-physiological and biochemical responses; and phenotypic plasticity were evaluated. The three genotypes presented mechanisms to tolerate both WD treatments. G1 presented the lowest yield reduction under moderate WD, mainly through a rapid stomatal closure and a modest vegetative growth. The differences among genotypes suggest that local adaptation is taking place within its natural habitat. Also, G2 presented environmentally induced shifts in plasticity for stomatal length and carotenoids, suggesting that phenotypic plasticity has a role in acclimation of plants to WD until selection works.


Assuntos
Altitude , Secas , Genótipo , Solanum/fisiologia , Água/fisiologia , Argentina , Solanum/genética
3.
Heredity (Edinb) ; 126(1): 50-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801346

RESUMO

DNA methylation can be environmentally modulated and plays a role in phenotypic plasticity. To understand the role of environmentally induced epigenetic variation and its dynamics in natural populations and ecosystems, it is relevant to place studies in a real-world context. Our experimental model is the wild potato Solanum kurtzianum, a close relative of the cultivated potato S. tuberosum. It was evaluated in its natural habitat, an arid Andean region in Argentina characterised by spatial and temporal environmental fluctuations. The dynamics of phenotypic and epigenetic variability (with Methyl Sensitive Amplified Polymorphism markers, MSAP) were assayed in three genotypes across three growing seasons. These genotypes were cultivated permanently and also reciprocally transplanted between experimental gardens (EG) differing in ca. 1000 m of altitude. In two seasons, the genotypes presented differential methylation patterns associated to the EG. In the reciprocal transplants, a rapid epigenomic remodelling occurred according to the growing season. Phenotypic plasticity, both spatial (between EGs within season) and temporal (between seasons), was detected. The epigenetic and phenotypic variability was positively correlated. The lack of an evident mitotic epigenetic memory would be a common response to short-term environmental fluctuations. Thus, the environmentally induced phenotypic and epigenetic variation could contribute to populations persistence through time. These results have implications for understanding the great ecological diversity of wild potatoes.


Assuntos
Jardins , Solanum tuberosum , Adaptação Fisiológica , Metilação de DNA , Ecossistema , Solanum tuberosum/genética
4.
Plant Cell Rep ; 40(1): 111-125, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068175

RESUMO

KEY MESSAGE: By studying three cv. Malbec clones cultivated in two vineyards with contrasting environmental conditions, we demonstrated that DNA methylation has an important role in the phenotypic plasticity and that epigenetic modulation is clone-dependent. Clonal selection and vegetative propagation determine low genetic variability in grapevine cultivars, although it is common to observe diverse phenotypes. Environmental signals may induce epigenetic changes altering gene expression and phenotype. The range of phenotypes that a genotype expresses in different environments is known as phenotypic plasticity. DNA methylation is the most studied epigenetic mechanism, but only few works evaluated this novel source of variability in grapevines. In the present study, we analyzed the effects on phenotypic traits and epigenome of three Vitis vinifera cv. Malbec clones cultivated in two contrasting vineyards of Mendoza, Argentina. Anonymous genome regions were analyzed using methylation-sensitive amplified polymorphism (MSAP) markers. Clone-dependent phenotypic and epigenetic variability between vineyards were found. The clone that presented the clearer MSAP differentiation between vineyards was selected and analyzed through reduced representation bisulfite sequencing. Twenty-nine differentially methylated regions between vineyards were identified and associated to genes and/or promoters. We discuss about a group of genes related to hormones homeostasis and sensing that could provide a hint of the epigenetic role in the determination of the different phenotypes observed between vineyards and conclude that DNA methylation has an important role in the phenotypic plasticity and that epigenetic modulation is clone-dependent.


Assuntos
Metilação de DNA , Polimorfismo Genético , Vitis/fisiologia , Argentina , Epigênese Genética , Fazendas , Interação Gene-Ambiente , Fenótipo , Regiões Promotoras Genéticas , Vitis/genética
5.
Plant Physiol Biochem ; 135: 287-294, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30599305

RESUMO

Environment and crop management shape plant's phenotype. Argentinean high-altitude vineyards are characterized by elevated solar ultraviolet-B radiation (UVB) and water deficit (D) that enhance enological quality for red winemaking. These signals promote phenolics accumulation in leaves and berries, being the responses mediated by abscisic acid (ABA). DNA methylation is an epigenetic mechanism that regulates gene expression and may affect grapevine growth, development and acclimation, since methylation patterns are mitotically heritable. Berry skins low molecular weight polyphenols (LMWP) were characterized in field grown Vitis vinifera L. cv. Malbec plants exposed to contrasting UV-B, D, and ABA treatments during one season. The next season early fruit shoots were epigenetically (methylation-sensitive amplification polymorphism; MSAP) and biochemically (LMWP) characterized. Unstable epigenetic patterns and/or stochastic stress-induced methylation changes were observed. UV-B and D were the treatments that induced greater number of DNA methylation changes respect to Control; and UV-B promoted global hypermethylation of MSAP epiloci. Sequenced MSAP fragments associated with UV-B and ABA showed similarities with transcriptional regulators and ubiquitin ligases proteins activated by light. UV-B was associated with flavonols accumulation in berries and with hydroxycinnamic acids in the next season fruit shoots, suggesting that DNA methylation could regulate the LMWP accumulation and participate in acclimation mechanisms.


Assuntos
Ácido Abscísico/farmacologia , Metilação de DNA , Polifenóis/metabolismo , Vitis/metabolismo , Ácidos Cumáricos/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Desidratação , Flavonóis/metabolismo , Frutas/metabolismo , Brotos de Planta/metabolismo , Raios Ultravioleta , Vitis/efeitos dos fármacos , Vitis/fisiologia , Vitis/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA