Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39005273

RESUMO

Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.

2.
Integr Comp Biol ; 58(5): 977-985, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986043

RESUMO

Global urban development continues to accelerate and have diverse effects on wildlife. Although most studies of anthropogenic impacts on animals have focused on indirect effects (e.g., environmental modifications like habitat change or pollution), there may also be direct effects of physical human presence and actions on wildlife stress, behavior, and persistence in cities. Most studies on how humans physically interact with wildlife have focused on the active, daytime phase of diurnal animals, rarely considering effects of our night-time activities. We hypothesized that, if night-time human presence is a stressor for wildlife that are not commonly exposed to humans, night-disturbed rural animals would show stronger physiological signs of elevated stress than would urban individuals. Specifically, we experimentally investigated the effects of human presence at night (HPAN) on disease, body mass, and mass-specific metabolic rates in urban- and rural-caught house finches (Haemorhous mexicanus) in captivity. Our HPAN treatment consisted of a human entering the housing room of the birds and briefly jostling the home cages of each finch as the person walked around the room for a 3-min period on five randomly selected nights per week. Compared with a control (night-undisturbed) group, we found that HPAN greatly increased the odds finches were awake for ca. 33 min post-disturbance, but that chronic treatment did not alter body mass, parasitic infection by coccidian endoparasites, or mass-specific basal metabolic rates. Additionally, finches caught from urban and rural sites did not differ in their response to the treatment. Overall, our results are consistent with those showing that brief but regular human disturbances can have acute negative effects on wildlife, but carry few if any long-term metabolic or disease-related costs in fast-lived birds. However, these findings contrast with the broad, chronic physiological effects of other anthropogenic changes, such as artificial light at night, and highlight the differential impacts that various human activities (which differ in sensory stimulus type, perceived threat, duration and intensity, etc.) can have on wildlife health and behavior.


Assuntos
Peso Corporal , Resistência à Doença , Ecossistema , Metabolismo Energético , Tentilhões/fisiologia , Animais , Doenças das Aves/imunologia , Cidades , Tentilhões/imunologia , Atividades Humanas , Urbanização
3.
Integr Comp Biol ; 56(6): 1215-1224, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27371388

RESUMO

Allometry, the proportional scaling of log trait size with log body size, evolves to optimize allocation to growth of separate structures and is a major constraint on the functional limits of animal traits. While there are many studies demonstrating the rigidity of allometry across traits and taxa, comparatively less work has been done on allometric variation across environments within species. Rapidly changing environments, such as cities, may be prime systems for studying the flexibility of allometry because they uniquely alter many environmental parameters (e.g., habitat, light, noise). We studied size variation, allometry, and allometric dispersion of craniofacial traits in both sexes of urban and rural house finches (Haemorhous mexicanus) because many traits in the head are ecologically critical to the survival and acclimation of birds to their environment (e.g., brain: response to cognitive challenges; bill: foraging modes). We found that urban finches had shorter eye axial lengths and skull widths, but longer (but not wider or deeper) bills, than rural finches. Also, allometric slopes of eye, skull, and bill traits differed based on sex and environment. In the rural environment, females had a far steeper allometric slope for eye axial length than males, but such slopes were similar between males and females in the city. Skull allometry was similar for males and females in both environments, but urban birds had a shallower slope for skull length (but not width) than rural birds. Other traits only differed by sex (males had a steeper slope for bill width), and one trait did not differ based on either sex or environment (bill depth). The dispersion of points around the allometric line did not differ by sex or environment for any craniofacial variable. Due to the significant but low genetic divergence between urban and rural finch populations, allometric differences are probably largely driven by plastic forces. We suggest that differences in diet and cognitive demand of urban environments may drive these allometric patterns. Overall, these results indicate that allometry may shift due to rapid environmental change and differentially so between the sexes.


Assuntos
Bico/anatomia & histologia , Meio Ambiente , Olho/anatomia & histologia , Tentilhões/anatomia & histologia , Crânio/anatomia & histologia , Animais , Tamanho Corporal , Feminino , Masculino , Fenótipo , População Rural , Fatores Sexuais , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA