Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(2): e0002323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786587

RESUMO

Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.


Assuntos
Reoviridae , Compartimentos de Replicação Viral , Animais , RNA/metabolismo , Reoviridae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Photochem Photobiol Sci ; 21(9): 1637-1645, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35665917

RESUMO

Direct back-face transmission steady-state fluorescence was successfully applied to the study of aggregation of ibuprofen and ibuprofenate anion in solution taking advantage of its own fluorescence. The analysis of the experimental data involves the use of the differential reabsorption model to account for re-absorption phenomenon and the closed association model to describe aggregation. The fluorescence quantum yield of ibuprofenate increases when it aggregates in the presence of sodium, but it markedly decreases when 1-butyl-3-methylimidazolium is used as counterion. The proposed methodology allows the accurate determination of the critical aggregation concentrations and the mean aggregation numbers. Results were supported by complementary techniques such as time-resolved fluorescence, 1H-NMR and small-angle neutron and X-ray scattering. The developed technique constitutes a promising strategy to characterize the aggregation of poorly fluorescent surfactants that aggregates at high concentrations and hence at high absorbance values, conditions in which the most common right-angle configuration for fluorescence acquisition is troublesome due to re-absorption.


Assuntos
Ibuprofeno , Tensoativos , Ânions , Ibuprofeno/química , Ibuprofeno/farmacologia , Espectroscopia de Ressonância Magnética , Tensoativos/química
3.
Pharmaceutics ; 13(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34575407

RESUMO

The anti-inflammatory, antifibrotic and antimicrobial activities of curcumin (CUR) are missed because of its low solubility in aqueous media, low bioavailability, and structural lability upon oral intake. Soft nanoparticles such as nanoliposomes are not efficient as CUR carriers, since crystalline CUR is expelled from them to physiological media. Nanostructures to efficiently trap and increase the aqueous solubility of CUR are needed to improve both oral or nebulized delivery of CUR. Here we showed that SRA1 targeted nanoarchaeosomes (nATC) [1:0.4 w:w:0.04] archaeolipids, tween 80 and CUR, 155 ± 16 nm sized of -20.7 ± 3.3 z potential, retained 0.22 mg CUR ± 0.09 per 12.9 mg lipids ± 4.0 (~600 µM CUR) in front to dilution, storage, and nebulization. Raman and fluorescence spectra and SAXS patterns were compatible with a mixture of enol and keto CUR tautomers trapped within the depths of nATC bilayer. Between 20 and 5 µg CUR/mL, nATC was endocytosed by THP1 and A549 liquid-liquid monolayers without noticeable cytotoxicity. Five micrograms of CUR/mL nATC nebulized on an inflamed air-liquid interface of A549 cells increased TEER, normalized the permeation of LY, and decreased il6, tnfα, and il8 levels. Overall, these results suggest the modified pharmacodynamics of CUR in nATC is useful for epithelia repair upon inflammatory damage, deserving further deeper exploration, particularly related to its targeting ability.

4.
Chemistry ; 27(39): 10077-10086, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33890346

RESUMO

Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications, such as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. In this work, the epoxide route was adapted for the synthesis of pure and stable ACP colloids. By using biocompatible solvents, such as ethylene glycol and/or glycerine, it was possible to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.


Assuntos
Fosfatos de Cálcio , Compostos de Epóxi , Apatitas , Fosfatos , Solventes
5.
Sleep Med ; 76: 16-25, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33059247

RESUMO

OBJECTIVES: At the end of 2019 the SARS-CoV-2 outbreak spread around the globe with a late arrival to South America. The objective of this study was to evaluate the impact of the long period of mandatory social isolation that took place in Argentina on the general psychological well-being of healthcare workers due to the COVID-19 pandemic. METHODS: A survey was conducted during June 2020, in healthcare workers. Pittsburgh Sleep Quality Index, Insomnia Severity Index, Sleepiness-Wakefulness Inability and Fatigue Test, and Goldberg depression and anxiety scale, were used to analyze the effects of the SARS-Cov 2 outbreak after three months of mandatory social isolation. Analyses were performed by logistic regression and a clustering algorithm in order to classify subjects in the function of their outcome's severity. RESULTS: From 1059 surveys, the majority reported symptoms of depression (81.0%), anxiety (76.5%), poor sleep quality (84.7%), and insomnia (73.7%) with 58.9% suffering from nightmares. Logistic regression showed that being in contact with COVID-19 patients, age, gender and the consumption of sleep medication during the mandatory social isolation were relevant predictors for insomnia, anxiety, and depression. Clustering analysis classified healthcare workers in three groups with healthy/mild, moderate, and severe outcomes. The most vulnerable group was composed mainly of younger people, female, non-medical staff, or physicians in training. CONCLUSION: An extremely high proportion of Argentinian healthcare workers suffered from sleep problems, anxiety, and depression symptoms. The clustering algorithm successfully separates vulnerable from non-vulnerable populations suggesting the need to carry out future studies involving resilience and vulnerability factors.


Assuntos
Transtornos de Ansiedade/psicologia , COVID-19 , Saúde Mental , SARS-CoV-2/patogenicidade , Isolamento Social , Adulto , Ansiedade/epidemiologia , Ansiedade/psicologia , Transtornos de Ansiedade/epidemiologia , Argentina , COVID-19/psicologia , Depressão/epidemiologia , Surtos de Doenças , Pessoal de Saúde/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Quarentena , Isolamento Social/psicologia , Estresse Psicológico/epidemiologia , Estresse Psicológico/psicologia
6.
Curr Res Food Sci ; 3: 113-121, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32914127

RESUMO

Hydrogels obtained by acidification with glucono-δ-lactone (GDL), starting from nanoemulsions formulated with different concentrations of sodium caseinate (1-4 wt%) or 4 wt% sodium caseinate and sucrose (2-8 wt%), were prepared with the aim of quantifying structural parameters of both, initial nanoemulsions and hydrogels after 2.5 h of GDL addition, using the Guinier-Porod (GP) or the generalized GP models. Gelation process was followed by performing in situ temperature-controlled X-ray small angle scattering experiments (SAXS) using synchrotron radiation. In nanoemulsions, the calculated radius of gyration for oil nanodroplets (Rg oil ) decreased with increasing protein concentration and for the 4 wt% protein nanoemulsion, with increasing sucrose content. Calculated values of Rg oil were validated correlating them with experimental Z-average values as measured by dynamic light scattering (DLS). For hydrogels, radii of gyration for the sphere equivalent to the hydrogel scattering object (R gsph ) were close to 3 nm while correlation distances among building blocks (R g2 ) were dependent on formulation. They increased with increasing contents of sodium caseinate and sucrose. R g2 parameter linearly correlated with hydrogel strength (G' ∞ ): a more connected nanostructure led to a stronger hydrogel.

7.
Chemistry ; 26(14): 3157-3165, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31917493

RESUMO

A new one-pot homogeneous methodology at room temperature to obtain Au nanoparticles (AuNP) on the basis of the epoxide route is presented. The proposed method takes advantage of the homogenous generation of OH- moieties driven by epoxide ring-opening, mediated by chloride nucleophilic attack. Once reached alkaline conditions, the reducing medium allows the quantitative formation of AuNP under well-defined kinetic control. A stabilizing agent, such as polyvinylpyrrolidone (PVP) or cetyltrimethylammonium chloride (CTAC), is required to maintain the AuNP stable. Meanwhile their presence dramatically affects the reduction kinetics and pathway, as demonstrated by the evolution of the UV/Vis spectra, small-angle X-ray scattering (SAXS) patterns, and pH value along the reaction. In the presence of PVP nanogold spheroids are obtained following a similar reduction mechanism as that observed for control experiments in the absence of PVP. However, if CTAC is employed a stable complex with AuIII is formed, leading to a different reaction pathway and resulting in ellipsoidal-like shaped AuNP. Moreover, the proposed methodology allows stabilize the growing AuNP, by coupling their formation with nonalkoxidic sol-gel reactions, leading to nanocomposite gels with embedded metallic nanoparticles. The epoxide route thus offers a versatile scenario for the one-pot preparation of new metal nanoparticles-inorganic/hybrid matrices nanocomposites with valuable optical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA