Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 46(12): 1021-1027, 2013 12.
Artigo em Inglês | MEDLINE | ID: mdl-24345910

RESUMO

Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation.

2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(12): 1021-1027, dez. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-695980

RESUMO

Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation.

3.
Genet Mol Res ; 10(3): 1545-57, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21863550

RESUMO

The complete mitochondrial DNA (mtDNA) control regions (CR), cytochrome b (Cyt b), NADH dehydrogenase subunit 4 (ND4) and cytochrome coxidase subunit I (CO I) genes of four Asian freshwater turtles, Mauremys japonica, Ocadia sinensis, M. mutica, and Annamemys annamensis, were sequenced using universal PCR and long-PCR techniques. Combined with CR sequences of Chinemys reevesii, the composition and structure of CR of the five species were compared and analyzed. Three functional domains (TAS, CD and CSB) in CR and their conserved sequences (TAS, CSB-F, CSB-1, CSB-2, and CSB-3) were identified based on sequence similarity to those of other turtles. At the 3' end of CSB, six type motifs of variable number of tandem repeats (VNTRs) of five species were recognized, in which the TTATATTA motif may be the VNTR motif of the ancestral species of these five turtles. Comparison of nucleotide divergences among Cyt b, ND4, CO I, and CR of 11 turtle species using transitions + transversions and transversions-only methods supported the conclusion that CR evolved 2.6- to 5.7-fold faster than the other mtDNA genes. After excluding VNTRs of CR, molecular phylogenetic trees were constructed with maximum parsimony, maximum likelihood and Bayesian inference methods. The results supported an expanded clade of Mauremys, which included species formerly in Ocadia, Chinemys, Mauremys, and Annamemys; this was also reflected in the results of VNTR analysis.


Assuntos
DNA Mitocondrial/química , Tartarugas/genética , Animais , Proteínas Correpressoras/genética , Citocromos b/genética , Evolução Molecular , Repetições Minissatélites , NADH Desidrogenase/genética , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA