Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 313: 120185, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108884

RESUMO

Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas.


Assuntos
Microplásticos , Plásticos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Ecossistema , Genes Bacterianos , Rios , Urbanização , Água
2.
Environ Sci Pollut Res Int ; 29(1): 543-552, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34331646

RESUMO

There is a rising concern that air pollution plays an important role in the COVID-19 pandemic. However, the results were not consistent on the association between air pollution and the spread of COVID-19. In the study, air pollution data and the confirmed cases of COVID-19 were both gathered from five severe cities across three countries in South America. Daily real-time population regeneration (Rt) was calculated to assess the spread of COVID-19. Two frequently used models, generalized additive models (GAM) and multiple linear regression, were both used to explore the impact of environmental pollutants on the epidemic. Wide ranges of all six air pollutants were detected across the five cities. Spearman's correlation analysis confirmed the positive correlation within six pollutants. Rt value showed a gradual decline in all the five cities. Further analysis showed that the association between air pollution and COVID-19 varied across five cities. According to our research results, even for the same region, varied models gave inconsistent results. For example, in Sao Paulo, both models show SO2 and O3 are significant independent variables, however, the GAM model shows that PM10 has a nonlinear negative correlation with Rt, while PM10 has no significant correlation in the multiple linear model. Moreover, in the case of multiple regions, currently used models should be selected according to local conditions. Our results indicate that there is a significant relationship between air pollution and COVID-19 infection, which will help states, health practitioners, and policy makers in combating the COVID-19 pandemic in South America.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Brasil , Cidades , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
3.
Sci Total Environ ; 744: 140881, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32674022

RESUMO

The role of meteorological factors in the transmission of the COVID-19 still needs to be determined. In this study, the daily new cases of the eight severely affected regions in four countries of South America and their corresponding meteorological data (average temperature, maximum temperature, minimum temperature, average wind speed, visibility, absolute humidity) were collected. Daily number of confirmed and incubative cases, as well as time-dependent reproductive number (Rt) was calculated to indicate the transmission of the diseases in the population. Spearman's correlation coefficients were assessed to show the correlation between meteorological factors and daily confirmed cases, daily incubative cases, as well as Rt. In particular, the results showed that there was a highly significant correlation between daily incubative cases and absolute humidity throughout the selected regions. Multiple linear regression model further confirmed the negative correlation between absolute humidity and incubative cases. The absolute humidity is predicted to show a decreasing trend in the coming months from the meteorological data of recent three years. Our results suggest the necessity of continuous controlling policy in these areas and some other complementary strategies to mitigate the contagious rate of the COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Humanos , Umidade , Conceitos Meteorológicos , SARS-CoV-2 , América do Sul , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA