Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
2.
Database (Oxford) ; 20242024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38994794

RESUMO

In recent years, drug repositioning has emerged as a promising alternative to the time-consuming, expensive and risky process of developing new drugs for diseases. However, the current database for drug repositioning faces several issues, including insufficient data volume, restricted data types, algorithm inaccuracies resulting from the neglect of multidimensional or heterogeneous data, a lack of systematic organization of literature data associated with drug repositioning, limited analytical capabilities and user-unfriendly webpage interfaces. Hence, we have established the first all-encompassing database called DrugRepoBank, consisting of two main modules: the 'Literature' module and the 'Prediction' module. The 'Literature' module serves as the largest repository of literature-supported drug repositioning data with experimental evidence, encompassing 169 repositioned drugs from 134 articles from 1 January 2000 to 1 July 2023. The 'Prediction' module employs 18 efficient algorithms, including similarity-based, artificial-intelligence-based, signature-based and network-based methods to predict repositioned drug candidates. The DrugRepoBank features an interactive and user-friendly web interface and offers comprehensive functionalities such as bioinformatics analysis of disease signatures. When users provide information about a drug, target or disease of interest, DrugRepoBank offers new indications and targets for the drug, proposes new drugs that bind to the target or suggests potential drugs for the queried disease. Additionally, it provides basic information about drugs, targets or diseases, along with supporting literature. We utilize three case studies to demonstrate the feasibility and effectiveness of predictively repositioned drugs within DrugRepoBank. The establishment of the DrugRepoBank database will significantly accelerate the pace of drug repositioning. Database URL:  https://awi.cuhk.edu.cn/DrugRepoBank.


Assuntos
Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Humanos , Bases de Dados de Produtos Farmacêuticos , Interface Usuário-Computador , Descoberta de Drogas/métodos , Algoritmos , Bases de Dados Factuais
3.
Eur J Intern Med ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034174

RESUMO

OBJECTIVES: To evaluate whether the timing of initial antibiotic administration in patients with sepsis in hospital affects mortality. METHODS: This systematic review and meta-analysis included studies from inception up to 19 May 2022. Interventional and observational studies including adult human patients with suspected or confirmed sepsis and reported time of antibiotic administration with mortality were included. Data were extracted by two independent reviewers. Summary estimates were calculated by using random-effects model. The primary outcome was mortality. RESULTS: We included 42 studies comprising 190,896 patients with sepsis. Pooled data showed that the OR for patient mortality who received antibiotics ≤1 hr was 0.83 (95 %CI: 0.67 to 1.04) when compared with patients who received antibiotics >1hr. Significant reductions in the risk of death in patients with earlier antibiotic administration were observed in patients ≤3 hrs versus >3 hrs (OR: 0.80, 95 %CI: 0.68 to 0.94) and ≤6 hrs vs 6 hrs (OR: 0.57, 95 %CI: 0.39 to 0.82). CONCLUSIONS: Our findings show an improvement in mortality in sepsis patients with early administration of antibiotics at <3 and <6 hrs. Thus, these results suggest that antibiotics should be administered within 3 hrs of sepsis recognition or ED arrival regardless of the presence or absence of shock.

4.
Rev Cardiovasc Med ; 25(6): 216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39076320

RESUMO

Background: Pheochromocytoma-induced takotsubo syndrome (Pheo-TTS) significantly increases the risk of adverse events for inpatient. The early identification of risk factors at admission is crucial for effective risk stratification and minimizing complications in Pheo-TTS patients. Methods: We conducted a systematic review combined with hierarchical cluster and feature importance analysis of demographic, clinical and laboratory data upon admission, alongside in-hospital complication data for Pheo-TTS patients. We analyzed cases published in PubMed and Embase from 2 May 2006 to 27 April 2023. Results: Among 172 Pheo-TTS patients, cluster analysis identified two distinct groups: a chest pain dominant (CPD) group (n = 86) and a non-chest pain dominant (non-CPD) group (n = 86). The non-CPD group was characterized by a younger age (44.0 ± 15.2 vs. 52.4 ± 14.4, p < 0.001), a higher prevalence of neurological/psychiatric disorders (53.5% vs. 32.6%), and increased presentation of dyspnea (87.2% vs. 17.4%), pulmonary rales (59.3% vs. 8.1%), and tachycardia (77.9% vs. 30.2%). Additionally, they exhibited more atypical takotsubo syndrome (TTS) imaging phenotypes (55.8% vs. 36.5%, all p < 0.05). The non-CPD group experienced more than a 2-fold increase for in-hospital adverse events compared to the CPD group (70.9% vs. 30.2%, p < 0.001). After adjusting for confounding factors, the absence of chest pain (odds ratio [OR] = 0.407, 95% confidence interval [CI] 0.169-0.979, p = 0.045), the presence of abdominal symptoms (OR = 3.939, 95% CI 1.770-8.766, p = 0.001), pulmonary rales (OR = 4.348, 95% CI 1.857-10.179, p = 0.001), and atypical TTS imaging phenotype (OR = 3.397, 95% CI 1.534-7.525, p = 0.003) remained as independent predictors of in-hospital complications. Conclusions: Clinical manifestations and imaging features at admission help to predict in-hospital complications for Pheo-TTS patients.

5.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891842

RESUMO

Time-series experiments are crucial for understanding the transient and dynamic nature of biological phenomena. These experiments, leveraging advanced classification and clustering algorithms, allow for a deep dive into the cellular processes. However, while these approaches effectively identify patterns and trends within data, they often need to improve in elucidating the causal mechanisms behind these changes. Building on this foundation, our study introduces a novel algorithm for temporal causal signaling modeling, integrating established knowledge networks with sequential gene expression data to elucidate signal transduction pathways over time. Focusing on Escherichia coli's (E. coli) aerobic to anaerobic transition (AAT), this research marks a significant leap in understanding the organism's metabolic shifts. By applying our algorithm to a comprehensive E. coli regulatory network and a time-series microarray dataset, we constructed the cross-time point core signaling and regulatory processes of E. coli's AAT. Through gene expression analysis, we validated the primary regulatory interactions governing this process. We identified a novel regulatory scheme wherein environmentally responsive genes, soxR and oxyR, activate fur, modulating the nitrogen metabolism regulators fnr and nac. This regulatory cascade controls the stress regulators ompR and lrhA, ultimately affecting the cell motility gene flhD, unveiling a novel regulatory axis that elucidates the complex regulatory dynamics during the AAT process. Our approach, merging empirical data with prior knowledge, represents a significant advance in modeling cellular signaling processes, offering a deeper understanding of microbial physiology and its applications in biotechnology.


Assuntos
Algoritmos , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Escherichia coli/genética , Escherichia coli/metabolismo , Anaerobiose/genética , Aerobiose , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transdução de Sinais/genética , Modelos Biológicos , Perfilação da Expressão Gênica/métodos
6.
Front Nutr ; 11: 1366435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689935

RESUMO

Breast milk (BM) is a primary biofluid that plays a crucial role in infant development and the regulation of the immune system. As a class of rich biomolecules in BM, microRNAs (miRNAs) are regarded as active factors contributing to infant growth and development. Surprisingly, these molecules exhibit resilience in harsh conditions, providing an opportunity for infants to absorb them. In addition, many studies have shown that miRNAs in breast milk, when absorbed into the gastrointestinal system, can act as a class of functional regulators to effectively regulate gene expression. Understanding the absorption pattern of BM miRNA may facilitate the creation of formula with a more optimal miRNA balance and pave the way for novel drug delivery techniques. In this review, we initially present evidence of BM miRNA absorption. Subsequently, we compile studies that integrate both in vivo and in vitro findings to illustrate the bioavailability and biodistribution of BM miRNAs post-absorption. In addition, we evaluate the strengths and weaknesses of previous studies and discuss potential variables contributing to discrepancies in their outcomes. This literature review indicates that miRNAs can be absorbed and act as regulatory agents.

7.
Plant Dis ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640429

RESUMO

Spinach (Spinacia oleracea) is a commonly used green vegetable. During September and October in both 2022 and 2023, a vegetable nursery company located among paddy rice fields in Taichung City, Taiwan, reported significant failures in spinach seedling production in net-houses with mean outdoor temperatures of 28.7℃. Abnormal growth was observed in approximately 30% of the spinach seedlings in each batch (n = 2,000 to 3,000), with aboveground tissues showing stunting, yellowing, and wilt, and underground tissues displaying root rot. The symptoms resembled the spinach damping-off documented in Taiwan in extension articles but which lacked complete pathogen identification. A total of 110 plants from two batches were used for pathogen isolation by placing roots on water agar incubated at 25℃ or were examined for the presence of oospores in diseased roots. Eighty-one percent of these plants were associated with Pythium. Nine Pythium isolates were used in subsequent analyses. Genomic DNA from these isolates was subjected to amplification of ITS, ß-tubulin gene (TUB2), and cytochrome C oxidase subunit Ⅱ (COXII) gene with primer pairs ITS1 / ITS4, BT5 / BT6, and FM58 / FM66 (Villa et al. 2006). Sequences of ITS (PP209187-PP209195), TUB2 (PP212864-PP212872), and COXII (PP212855-PP212863) were deposited in GenBank. Four isolates (sp01, sp02, sp03, and sp04) were 100% identical to the neotype strain (CBS 118.80) of Pythium aphanidermatum (Edson) Fitzp. for the ITS (761 bp), TUB2 (583 bp), and COXII (547 bp). Five isolates (2sp, 3sp, ND2-4sp, D3-4sp, and ND3-3sp) were 99.87%, 100%, and 99% identical to the reference strain (CBS 254.70) of Pythium myriotylum Drechsler for the ITS (762 bp), TUB2 (602 bp), and COXII (556 bp), respectively. Phylogenetic analysis of Pythium isolates inferred from concatenated sequences of the three genes (LéVesque and De Cock 2004; Villa et al. 2006) revealed that the same four isolates grouped with the neotype strain of P. aphanidermatum, and the five isolates clustered with the reference strain of P. myriotylum, each with a 100% bootstrap support. Morphological features of isolates ND3-3sp and sp01 were used for identification. Isolate ND3-3sp produced inflated lobulate sporangia and aplerotic and smooth oospores (16.3 to 25.1 um; n = 30) attached with three to five antheridia, consistent with identification as P. myriotylum. Isolate sp01 produced inflated lobulate sporangia and aplerotic and smooth oospores (17.0 to 24.0 um; n= 30) attached with a single intercalary antheridium, agreeing with the morphology of P. aphanidermatum (Van der Plaats-Niterink 1981). To investigate the pathogenicity of the nine Pythium isolates on spinach, 20 mycelial agar discs (4 mm in diameter) from a 2-day-old V8 culture of each isolate were used to induce sporangia and zoospores in 20 ml sterilized water at 25℃ with a 12 h light / dark regime. A 1.5 ml zoospore suspension (6 × 103 zoospores / ml) was dropped into BVB growth substrate of two spinach seedlings in 2-week-old at 25℃ with 12 h light / dark regime, resulting in symptoms resembling those observed in commercial nurseries at 7 days post-inoculation (dpi). Each Pythium isolate inoculated 20 seedlings in 10 cells of a planting tray. At 14 dpi, disease incidences were 95 to 100% for P. myriotylum isolates and 60 to 85% for P. aphanidermatum isolates, while control plants treated with water showed no symptoms. Re-isolated pathogens from the inoculated plants were morphologically identical to the inoculated isolates, completing Koch's postulates. Results of the pathogenicity assay, along with molecular and morphological identification, conclude that the root rot of spinach was caused by P. myriotylum and P. aphanidermatum. The two oomycetes were not formally documented to cause spinach diseases in Taiwan. Although P. myriotylum has been isolated from spinach (Wang et al. 2003), its pathogenicity to spinach was not documented worldwide. Root rot of spinach caused by P. aphanidermatum has been reported in the United States (Bates and Stanghellini 1984), Korea (Cho and Shin 2004), and Italy (Garibaldi et al. 2015). These pathogens thrive in humid and hot weather (Littrell and McCarter, 1970). Producing spinach in cooler weather or in a temperature-controlled environment may help prevent severe occurrence of the disease.

8.
Adv Healthc Mater ; 13(2): e2302268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37748773

RESUMO

Combination immunotherapy has emerged as a promising strategy to address the challenges associated with immune checkpoint inhibitor (ICI) therapy in breast cancer. The efficacy of combination immunotherapy hinges upon the intricate and dynamic nature of the tumor microenvironment (TME), characterized by cellular heterogeneity and molecular gradients. However, current methodologies for drug screening often fail to accurately replicate these complex conditions, resulting in limited predictive capacity for treatment outcomes. Here, a tumor-microenvironment-on-chip (TMoC), integrating a circulation system and ex vivo tissue culture with physiological oxygen and nutrient gradients, is described. This platform enables spatial infiltration of cytotoxic CD8+ T cells and their targeted attack on the tumor, while preserving the high complexity and heterogeneity of the TME. The TMoC is employed to assess the synergistic effect of five targeted therapy drugs and five chemotherapy drugs in combination with immunotherapy, demonstrating strong concordance between chip and animal model responses. The TMoC holds significant potential for advancing drug development and guiding clinical decision-making, as it offers valuable insights into the complex dynamics of the TME.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Microambiente Tumoral , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Resultado do Tratamento
9.
Int J Rheum Dis ; 27(1): e14986, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014453

RESUMO

BACKGROUND: Studies have demonstrated the association of hyperuricemia with hypertension, metabolic syndrome, cardiovascular disease, and chronic renal disease. Although Western medicine presents promising effects for treating hyperuricemia and gout, identifying a safe and effective alternative to traditional Chinese medicine (TCM) for treating hyperuricemia is essential. OBJECTIVE: To evaluate the efficacy and safety of TCM formulas, "Wu-Ling San" and "Yin Chen Wu-Ling San," in patients with hyperuricemia. METHODS: A randomized, double-blinded, placebo-controlled clinical trial in adults with hyperuricemia was conducted. Sixty patients with serum urate level higher than 8 mg/dL were enrolled in the study. Patients were then randomized into three arms: "Wu-Ling San," "Yin Chen Wu-Ling San," and placebo for 4 weeks. Efficacy and safety were evaluated at weeks 2, 4, and 8. Primary and secondary endpoints were set to evaluate the serum urate concentration and related indicators at weeks 2, 4, and 8. RESULTS: No significant differences were observed among the three arms in terms of the serum urate level (<6 mg/dL) at week 4. The serum urate level was lower in the "Yin Chen Wi-Ling" arm at week 8 (8.1 mg/dL vs. 9.1 mg/dL, p = .034). The serum urate levels were significantly different in both the "Wu-Ling San" and "Yin Chen Wu-Ling San" arms from those at the baseline (p < .05). CONCLUSIONS: Two TCM formulas were found to be relatively safe for the short-term treatment of the patients with hyperuricemia. No statistically significant difference was observed in reaching the target-serum urate level <6 mg/dL.


Assuntos
Gota , Hiperuricemia , Adulto , Humanos , Hiperuricemia/diagnóstico , Hiperuricemia/tratamento farmacológico , Ácido Úrico , Medicina Tradicional Chinesa , Gota/diagnóstico , Gota/tratamento farmacológico , Supressores da Gota/efeitos adversos , Resultado do Tratamento
10.
Plant Dis ; 108(6): 1632-1644, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38128079

RESUMO

There are four formae speciales of Fusarium oxysporum responsible for causing yellows of Brassicaceae. Because of crossbreeding among crops, the host ranges of these formae speciales often overlap, making pathogen identification a challenging task. Among these formae speciales, F. oxysporum f. sp. rapae and F. oxysporum f. sp. matthiolae still lack specific primers for pathogen identification. To address this problem, we targeted the secreted in xylem (SIX) genes, known as specific effectors of pathogenic F. oxysporum, for primer design. Through sequence comparison with other formae speciales, we successfully designed specific primers for F. oxysporum f. sp. rapae and F. oxysporum f. sp. matthiolae on SIX14 and SIX9, respectively. Both primer pairs exhibited high specificity in detecting F. oxysporum f. sp. rapae or F. oxysporum f. sp. matthiolae, distinguishing them from 20 nontarget formae speciales of F. oxysporum, five species of phytopathogenic Fusarium, and four other common pathogenic fungi affecting cruciferous plants. Moreover, the effectiveness of these specific primers was validated by detecting the pathogens in infected plants. To further enhance the identification process of the four formae speciales, we combined the two newly designed specific primer pairs with two previously published primer pairs, enabling the establishment of a multiplex PCR method that can accurately distinguish all four formae speciales of F. oxysporum responsible for causing yellows in cruciferous plants in a single reaction.


Assuntos
Brassicaceae , Primers do DNA , Fusarium , Reação em Cadeia da Polimerase Multiplex , Doenças das Plantas , Fusarium/genética , Fusarium/isolamento & purificação , Fusarium/classificação , Doenças das Plantas/microbiologia , Brassicaceae/microbiologia , Primers do DNA/genética , Reação em Cadeia da Polimerase Multiplex/métodos
11.
J Ethnopharmacol ; 319(Pt 3): 117232, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37757992

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophorae Flavescentis Radix (Kushen) is the primary herb component of Compound Kushen Injection (CKI), an approved clinical treatment for tumors. Despite CKI's widespread use, the underlying mechanisms of Kushen regarding microRNA-target and pathway remain unclear in non-small cell lung cancer (NSCLC). AIM OF THE STUDY: This study aimed to elucidate the crucial miRNAs-targets and pathways responsible for the Kushen's impact on NSCLC. MATERIALS AND METHODS: CCK8, colony formation, and apoptosis assays were performed to assess the effects of Kushen on NSCLC cells. Subsequently, we treated the A549 cell line with varying concentrations of Kushen to obtain mRNA and miRNA expression profiles. A DE (differentially expressed) miRNAs-DEGs network was then constructed to identify the critical miRNA-mRNA interaction influenced by Kushen. Furthermore, we performed clinical significance and prognosis analyses of hub genes to narrow down key genes and their corresponding miRNAs. Finally, the effects of Kushen on critical miRNA-mRNA interaction and related pathway were verified by in vitro and in vivo experiments. RESULTS: In this study, we initially demonstrated that Kushen significantly inhibited cell proliferation, suppressed colony formation, and induced apoptosis in the A549 cells, PC9 cells, and the A549 zebrafish xenograft model. Through expression profile analysis, a DE miRs-DEGs network was constructed with 16 DE miRs and 68 DEGs. Through the network analysis and expression validation, we found Kushen could significantly down-regulate miR-183-5p expression and up-regulate EGR1 expression. Additionally, Kushen affected the PTEN/Akt pathway, increasing PTEN expression and decreasing pAkt expression. Finally, matrine, the essential active compound of Kushen, also inhibited cell growth, induced apoptosis, and regulated miR-183-5p/EGR1 and PTEN/AKT pathway. CONCLUSIONS: Altogether, these findings supported the critical role of miR-183-5p/EGR1 and the PTEN/AKT pathway in the beneficial effects of Kushen on NSCLC, highlighting the therapeutic potential of Kushen in NSCLC treatment.


Assuntos
Produtos Biológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Proto-Oncogênicas c-akt , Peixe-Zebra , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
12.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067658

RESUMO

Ferroptosis is a form of regulated cell death that is characterized by the accumulation of iron-dependent lipid peroxides. The regulation of ferroptosis involves both non-enzymatic reactions and enzymatic mechanisms. Natural products have demonstrated potential effects on various enzymes, including GPX4, HO-1, NQO1, NOX4, GCLC, and GCLM, which are mainly involved in glutathione metabolic pathway or oxidative stress regulation, and ACSL3 and ACSL4, which mainly participate in lipid metabolism, thereby influencing the regulation of ferroptosis. In this review, we have provided a comprehensive overview of the existing literature pertaining to the effects of natural products on enzymes involved in ferroptosis and discussed their potential implications for the prevention and treatment of ferroptosis-related diseases. We also highlight the potential challenge that the majority of research has concentrated on investigating the impact of natural products on the expression of enzymes involving ferroptosis while limited attention is given to the regulation of enzyme activity. This observation underscores the considerable potential and scope for exploring the influence of natural products on enzyme activity.


Assuntos
Produtos Biológicos , Ferroptose , Produtos Biológicos/farmacologia , Glutationa , Ferro , Metabolismo dos Lipídeos
14.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762364

RESUMO

Drug-target interactions (DTIs) are considered a crucial component of drug design and drug discovery. To date, many computational methods were developed for drug-target interactions, but they are insufficiently informative for accurately predicting DTIs due to the lack of experimentally verified negative datasets, inaccurate molecular feature representation, and ineffective DTI classifiers. Therefore, we address the limitations of randomly selecting negative DTI data from unknown drug-target pairs by establishing two experimentally validated datasets and propose a capsule network-based framework called CapBM-DTI to capture hierarchical relationships of drugs and targets, which adopts pre-trained bidirectional encoder representations from transformers (BERT) for contextual sequence feature extraction from target proteins through transfer learning and the message-passing neural network (MPNN) for the 2-D graph feature extraction of compounds to accurately and robustly identify drug-target interactions. We compared the performance of CapBM-DTI with state-of-the-art methods using four experimentally validated DTI datasets of different sizes, including human (Homo sapiens) and worm (Caenorhabditis elegans) species datasets, as well as three subsets (new compounds, new proteins, and new pairs). Our results demonstrate that the proposed model achieved robust performance and powerful generalization ability in all experiments. The case study on treating COVID-19 demonstrates the applicability of the model in virtual screening.

15.
Plant Dis ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578370

RESUMO

The Japanese spindle (Euonymus japonicus Thunb.) is commonly used as an ornamental hedge plant in Taiwan. In March 2020, a severe powdery mildew disease was observed on E. japonicus surrounding a city park spanning six hectares in Taichung city, Taiwan. Around 90% of the plants showed symptoms on the leaves and pedicels of young shoots. Similar symptoms were observed in other districts of Taichung city and Taipei city between March to June in subsequent years. Initial signs of infection manifest as circular chlorotic spots on the leaves, which are subsequently covered by white mycelia on either the upper or lower surfaces of the spots. In severe cases, both sides of the leaves become entirely covered by dense mycelia. Hyphal appressoria were solitary or in opposite paired, lobed to multilobed. Conidiophores grow erectly from the hyphae, consist of 2-3 cylindrical cells, 38.9 to 78.6 × 6.31 to 8.28 µm (n = 30). Foot cells are usually straight or slightly flexuous, 23.6 to 43.2 µm (n = 30), followed by 1 to 2 shorter cells. Ellipsoidal conidia are produced singly on the conidiophores, 24.1 to 36.3 × 10.6 to 14.97 µm (n = 30), without fibrosin bodies. Germ tubes are mostly subterminal, sometimes terminal, occasionally exhibiting a longitudinal pattern. Chasmothecia were not observed. These morphological characteristics correspond to the description of Erysiphe euonymicola U. Braun (Braun and Cook 2012), one of the Erysiphe species reported on E. japonicus. Genomic DNA was extracted from seven isolates obtained from different plants in the affected regions. The internal transcribed spacer (ITS) and 28S large subunit (LSU) of rDNA sequences (ITS accession nos.: OR073423-OR073429; LSU accession nos.: OR073448-OR073454) were amplified and sequenced using primer sets PMITS-1 / PMITS-2 (Cunnington et al. 2003) and NLP2 / PRM2 (Bradshaw and Tobin 2020), respectively. The resulting sequences exhibited identities ranging from 99.1 to 100% in ITS and 100% in LSU when compared to the corresponding sequences of E. euonymicola MUMH 133 (ITS: AB250228; LSU: AB250230) (Limkaisang et al. 2006). Phylogenetic analysis based on the concatenated sequences of ITS and LSU clustered the seven isolates within the same clade as three E. euonymicola isolates (MUMH 133, MUMH 6999 and MUMH 7012). Pathogenicity assays were conducted on one-meter tall E. japonicus plants by gently smearing infected leaves on all leaves of four healthy plants. Four uninoculated plants were used as control. All eight assayed plants were enclosed in plastic bags to maintain high humidity at 28 ± 2°C for 3 days. Chlorotic spots began to appear on leaves younger than one month old at 7 days post inoculation (dpi). By 28 dpi, all inoculated plants showed symptoms. Spots expanded or merged and formed a dense mycelial layer on leaves younger than three months, while mature dark green leaves were asymptomatic. No symptoms were observed on any leaves of the control plants. The morphological characteristics and sequences of ITS and LSU of the pathogen from the inoculated plants matched the above information. Based on these findings, E. euonymicola was identified as the causal agent of powdery mildew on E. japonicus, representing the first documented report of this disease in Taiwan. A voucher specimen TNM F0037001 (isolate EPM-1) was deposited in the National Museum of Natural Science, Taiwan. The pathogen has been frequently reported in recent years and significantly impacts the ornamental value of Euonymus spp. (Abbasi and Braun 2020; Lee et al. 2015; Li et al. 2011; Pei et al. 2022). This report also provides an evidence of an ongoing outbreak of the pathogen.

16.
Sci Rep ; 13(1): 10534, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386291

RESUMO

The SARS-CoV-2 virus has caused a public health crisis globally. Against the backdrop of global resilience, studies have demonstrated the therapeutic value of home gardening as a measure to strengthen human health. However, there is a lack of comparative studies on its benefits across countries. Studies need to examine the role of home gardening in improving public health in various societies to understand and encourage this practice broadly and effectively. We chose Taiwan, Thailand, and Vietnam as case studies, which have suffered substantial pandemic impacts, with millions of infections and thousands of deaths. We explored and compared the perceptions of people on home gardening and its health benefits during the COVID-19 pandemic. We conducted online surveys in three countries between May 1 and September 30, 2022, with a total of 1172 participants. Data were collated on perceived pandemic stress, challenges and solutions in gardening, home gardening intentions, and mental and physical health benefits. In these countries, we found that perceived pandemic stress positively affects home gardening intentions, whereby the motivation of Vietnamese people is the highest. Challenges hinder gardening intentions, while the solutions only positively affect gardening intentions in Taiwan and Vietnam. Home gardening intentions positively affect mental and physical health, whereby there are higher mental health benefits in Taiwanese people than in Thai people. Our findings potentially support public health recovery and promote healthy lifestyles during the COVID-19 pandemic.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Jardinagem , Pandemias , Intenção
17.
Chin Med ; 18(1): 74, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37337262

RESUMO

BACKGROUND: Herbal medicine Sanqi (SQ), the dried root or stem of Panax notoginseng (PNS), has been reported to have anti-diabetic and anti-obesity effects and is usually administered as a decoction for Chinese medicine. Alternative to utilizing PNS pure compound for treatment, we are motivated to propose an unconventional scheme to investigate the functions of PNS mixture. However, studies providing a detailed overview of the transcriptomics-based signaling network in response to PNS are seldom available. METHODS: To explore the reasoning of PNS in treating metabolic disorders such as insulin resistance, we implemented a systems biology-based approach with RNA sequencing (RNA-seq) and miRNA sequencing data to elucidate key pathways, genes and miRNAs involved. RESULTS: Functional enrichment analysis revealed PNS up-regulating oxidative stress-related pathways and down-regulating insulin and fatty acid metabolism. Superoxide dismutase 1 (SOD1), peroxiredoxin 1 (PRDX1), heme oxygenase-1 (Hmox1) and glutamate cysteine ligase (GCLc) mRNA and protein levels, as well as related miRNA levels, were measured in PNS treated rat pancreatic ß cells (INS-1). PNS treatment up-regulated Hmox1, SOD1 and GCLc expression while down-regulating miR-24-3p and miR-139-5p to suppress oxidative stress. Furthermore, we verified the novel interactions between miR-139-5p and miR-24-3p with GCLc and SOD1. CONCLUSION: This work has demonstrated the mechanism of how PNS regulates cellular molecules in metabolic disorders. Therefore, combining omics data with a systems biology strategy could be a practical means to explore the potential function and molecular mechanisms of Chinese herbal medicine in the treatment of metabolic disorders.

18.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37114659

RESUMO

Cyclic AMP receptor proteins (CRPs) are important transcription regulators in many species. The prediction of CRP-binding sites was mainly based on position-weighted matrixes (PWMs). Traditional prediction methods only considered known binding motifs, and their ability to discover inflexible binding patterns was limited. Thus, a novel CRP-binding site prediction model called CRPBSFinder was developed in this research, which combined the hidden Markov model, knowledge-based PWMs and structure-based binding affinity matrixes. We trained this model using validated CRP-binding data from Escherichia coli and evaluated it with computational and experimental methods. The result shows that the model not only can provide higher prediction performance than a classic method but also quantitatively indicates the binding affinity of transcription factor binding sites by prediction scores. The prediction result included not only the most knowns regulated genes but also 1089 novel CRP-regulated genes. The major regulatory roles of CRPs were divided into four classes: carbohydrate metabolism, organic acid metabolism, nitrogen compound metabolism and cellular transport. Several novel functions were also discovered, including heterocycle metabolic and response to stimulus. Based on the functional similarity of homologous CRPs, we applied the model to 35 other species. The prediction tool and the prediction results are online and are available at: https://awi.cuhk.edu.cn/∼CRPBSFinder.


Assuntos
Proteína Receptora de AMP Cíclico , Proteínas de Escherichia coli , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sítios de Ligação/genética , Ligação Proteica/genética
19.
Front Pharmacol ; 14: 1121799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007025

RESUMO

Introduction: Cinnamomi ramulus (CR) is one of the most widely used traditional Chinese medicine (TCM) with anti-cancer effects. Analyzing transcriptomic responses of different human cell lines to TCM treatment is a promising approach to understand the unbiased mechanism of TCM. Methods: This study treated ten cancer cell lines with different CR concentrations, followed by mRNA sequencing. Differential expression (DE) analysis and gene set enrichment analysis (GSEA) were utilized to analyze transcriptomic data. Finally, the in silico screening results were verified by in vitro experiments. Results: Both DE and GSEA analysis suggested the Cell cycle pathway was the most perturbated pathway by CR across these cell lines. By analyzing the clinical significance and prognosis of G2/M related genes (PLK1, CDK1, CCNB1, and CCNB2) in various cancer tissues, we found that they were up-regulated in most cancer types, and their down-regulation showed better overall survival rates in cancer patients. Finally, in vitro experiments validation on A549, Hep G2, and HeLa cells suggested that CR can inhibit cell growth by suppressing the PLK1/CDK1/ Cyclin B axis. Discussion: This is the first study to apply transcriptomic analysis to investigate the cancer cell growth inhibition of CR on various human cancer cell lines. The core effect of CR on ten cancer cell lines is to induce G2/M arrest by inhibiting the PLK1/CDK1/Cyclin B axis.

20.
J Control Release ; 354: 417-428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36627025

RESUMO

Fibrosis is an excessive accumulation of extracellular matrix (ECM) that may cause severe organ dysfunction. Nitric oxide (NO), a multifunctional gaseous signaling molecule, may inhibit fibrosis, and delivery of NO may serve as a potential antifibrotic strategy. However, major limitations in the application of NO to treat fibrotic diseases include its nonspecificity, short half-life and low availability in fibrotic tissue. Herein, we aimed to develop a stimuli-responsive drug carrier to deliver NO to halt kidney fibrosis. We manufactured a nanoparticle (NP) composed of pH-sensitive poly[2-(diisopropylamino)ethyl methacrylate (PDPA) polymers to encapsulate a NO donor, a dinitrosyl iron complex (DNIC; [Fe2(µ-SEt)2(NO)4]). The NPs were stable at physiological pH 7.4 but disintegrated at pH 4.0-6.0. The NPs showed significant cytotoxicity to cultured human myofibroblasts and were able to inhibit the activation of myofibroblasts, as indicated by a lower expression level of α-smooth muscle actin and the synthesis of a major ECM component, collagen I, in cultured human myofibroblasts. When given to mice treated with unilateral ureteral ligation/obstruction (UUO) to induce kidney fibrosis, these NPs remained in blood at a stable concentration for as long as 24 h and might enter the fibrotic kidneys to suppress myofibroblast activation and collagen I production, leading to a 70% reduction in the fibrotic area. In summary, our strategy to assemble a NO donor, the iron nitrosyl complex DNIC, into pH-responsive NPs proves effective in treating renal fibrosis and warrants further investigation for its therapeutic potential.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Humanos , Animais , Rim , Óxido Nítrico/metabolismo , Nefropatias/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Colágeno Tipo I/metabolismo , Fibrose , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA