Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Protein Expr Purif ; 218: 106458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423156

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.


Assuntos
Proteínas de Membrana , Trypanosoma cruzi , Trypanosoma cruzi/genética , Cisteína Endopeptidases/metabolismo , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Microbiol Spectr ; 11(3): e0019923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140369

RESUMO

Alterations caused by Trypanosoma cruzi in the composition of gut microbiome may play a vital role in the host-parasite interactions that shapes physiology and immune responses against infection. Thus, a better understanding of this parasite-host-microbiome interaction may yield relevant information in the comprehension of the pathophysiology of the disease and the development of new prophylactic and therapeutic alternatives. Therefore, we implemented a murine model with two mice strains (BALB/c and C57BL/6) to evaluate the impact of Trypanosoma cruzi (Tulahuen strain) infection on the gut microbiome utilizing cytokine profiling and shotgun metagenomics. Higher parasite burdens were observed in cardiac and intestinal tissues, including changes in anti-inflammatory (interleukin-4 [IL-4] and IL-10) and proinflammatory (gamma interferon, tumor necrosis factor alpha, and IL-6) cytokines. Bacterial species such as Bacteroides thetaiotaomicron, Faecalibaculum rodentium, and Lactobacillus johnsonii showed a decrease in relative abundance, while Akkermansia muciniphila and Staphylococcus xylosus increased. Likewise, as infection progressed, there was a decrease in gene abundances related to metabolic processes such as lipid synthesis (including short-chain fatty acids) and amino acid synthesis (including branched-chain amino acids). High-quality metagenomic assembled genomes of L. johnsonii and A. muciniphila among other species were reconstructed, confirming, functional changes associated with metabolic pathways that are directly affected by the loss of abundance of specific bacterial taxa. IMPORTANCE Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, presenting acute and chronic phases where cardiomyopathy, megaesophagus, and/or megacolon stand out. During the course of its life cycle, the parasite has an important gastrointestinal tract transit that leads to severe forms of CD. The intestinal microbiome plays an essential role in the immunological, physiological, and metabolic homeostasis of the host. Therefore, parasite-host-intestinal microbiome interactions may provide information on certain biological and pathophysiological aspects related to CD. The present study proposes a comprehensive evaluation of the potential effects of this interaction based on metagenomic and immunological data from two mice models with different genetic, immunological, and microbiome backgrounds. Our findings suggest that there are alterations in the immune and microbiome profiles that affect several metabolic pathways that can potentially promote the infection's establishment, progression, and persistence. In addition, this information may prove essential in the research of new prophylactic and therapeutic alternatives for CD.


Assuntos
Doença de Chagas , Microbiota , Trypanosoma cruzi , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doença de Chagas/parasitologia
3.
PLoS Negl Trop Dis ; 17(3): e0011236, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996185

RESUMO

BACKGROUND: Recombinant Schistosoma mansoni Tetraspanin-2 formulated on Alhydrogel (Sm-TSP-2/Alhydrogel) is being developed to prevent intestinal and hepatic disease caused by S. mansoni. The tegumentary Sm-TSP-2 antigen was selected based on its unique recognition by cytophilic antibodies in putatively immune individuals living in areas of ongoing S. mansoni transmission in Brazil, and preclinical studies in which vaccination with Sm-TSP-2 protected mice following infection challenge. METHODS: A randomized, observer-blind, controlled, Phase 1b clinical trial was conducted in 60 healthy adults living in a region of Brazil with ongoing S. mansoni transmission. In each cohort of 20 participants, 16 were randomized to receive one of two formulations of Sm-TSP-2 vaccine (adjuvanted with Alhydrogel only, or with Alhydrogel plus the Toll-like receptor-4 agonist, AP 10-701), and 4 to receive Euvax B hepatitis B vaccine. Successively higher doses of antigen (10 µg, 30 µg, and 100 µg) were administered in a dose-escalation fashion, with progression to the next dose cohort being dependent upon evaluation of 7-day safety data after all participants in the preceding cohort had received their first dose of vaccine. Each participant received 3 intramuscular injections of study product at intervals of 2 months and was followed for 12 months after the third vaccination. IgG and IgG subclass antibody responses to Sm-TSP-2 were measured by qualified indirect ELISAs at pre- and post-vaccination time points through the final study visit. RESULTS: Sm-TSP-2/Alhydrogel administered with or without AP 10-701 was well-tolerated in this population. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. No vaccine-related serious adverse events or adverse events of special interest were observed. Groups administered Sm-TSP-2/Alhydrogel with AP 10-701 had higher post-vaccination levels of antigen-specific IgG antibody. A significant dose-response relationship was seen in those administered Sm-TSP-2/Alhydrogel with AP 10-701. Peak anti-Sm-TSP-2 IgG levels were observed approximately 2 weeks following the third dose, regardless of Sm-TSP-2 formulation. IgG levels fell to low levels by Day 478 in all groups except the 100 µg with AP 10-701 group, in which 57% of subjects (4 of 7) still had IgG levels that were ≥4-fold higher than baseline. IgG subclass levels mirrored those of total IgG, with IgG1 being the predominant subclass response. CONCLUSIONS: Vaccination of adults with Sm-TSP-2/Alhydrogel in an area of ongoing S. mansoni transmission was safe, minimally reactogenic, and elicited significant IgG and IgG subclass responses against the vaccine antigen. These promising results have led to initiation of a Phase 2 clinical trial of this vaccine in an endemic region of Uganda. TRIAL REGISTRATION: NCT03110757.


Assuntos
Esquistossomose mansoni , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Hidróxido de Alumínio , Brasil , Imunoglobulina G , Schistosoma mansoni , Vacinas Protozoárias
5.
Trop Med Infect Dis ; 6(2)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067079

RESUMO

The eradication of the vector Rhodnius prolixus from Central America was heralded as a victory for controlling transmission of Trypanosoma cruzi, the parasite that causes Chagas disease. While public health officials believed this milestone achievement would effectively eliminate Chagas disease, case reports of acute vector transmission began amassing within a few years. This investigation employed a cross-sectional serosurvey of children either presenting with fever for clinical care or children living in homes with known triatomine presence in the state of Sonsonate, El Salvador. Over the 2018 calendar year, a 2.3% Chagas disease seroprevalence among children with hotspot clustering in Nahuizalco was identified. Positive serology was significantly associated with dogs in the home, older participant age, and a higher number of children in the home by multivariate regression. Concomitant intestinal parasitic infection was noted in a subset of studied children; 60% having at least one intestinal parasite and 15% having two or more concomitant infections. Concomitant parasitic infection was statistically associated with an overall higher parasitic load detected in stool by qPCR. Lastly, a four-fold higher burden of stunting was identified in the cohort compared to the national average, with four-fifths of mothers reporting severe food insecurity. This study highlights that polyparasitism is common, and a systems-based approach is warranted when treating Chagas disease seropositive children.

6.
Front Immunol ; 12: 788185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992603

RESUMO

Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.


Assuntos
Antígenos de Helmintos/administração & dosagem , Ascaríase/prevenção & controle , Ascaris suum/imunologia , Doenças Negligenciadas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Animais , Antígenos de Helmintos/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Ascaríase/patologia , Ascaris suum/isolamento & purificação , Feminino , Humanos , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos , Doenças Negligenciadas/imunologia , Doenças Negligenciadas/parasitologia , Doenças Negligenciadas/patologia , Vacinas Protozoárias/imunologia , Células Th2/imunologia , Eficácia de Vacinas , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
7.
Vaccine ; 39(2): 394-401, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33248854

RESUMO

An estimated 400 million people are infected by parasites of the genus Ascaris and the existing control measures are inefficient. Vaccine development using B cell antigens is a promising strategy for increased protection against this parasite. The present study aimed at developing a chimeric protein capable of conferring protection against infection by Ascaris sp. For this purpose, we performed B-cell epitope predictions on previously described vaccine candidate proteins from Ascaris suum and the corresponding peptides were used to construct a chimeric protein. Female BALB / c mice were immunized subcutaneously in three doses at 10 day intervals with a vaccine formulation comprised of the chimeric protein together with monophosphoryl lipid A (MPLA). Control groups included protein alone, MPLA, or PBS. After challenge infection, animals vaccinated with chimeric protein plus MPLA showed a reduction of 73.54% of larval load in the lung compared to control group animals. Animals immunized with chimeric protein plus MPLA also display higher IgG response and a reduction in lung inflammation. Our study highlights how chimeric proteins containing more than one B cell epitope can enhance immune protection against helminthic infection and offer new approaches to the development of Ascaris vaccines.


Assuntos
Ascaríase , Animais , Antígenos de Helmintos , Ascaríase/prevenção & controle , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Vacinação
8.
Front Immunol, v. 12, 788185, dez. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4089

RESUMO

Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.

9.
PLoS Negl Trop Dis ; 14(10): e0008686, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33119616

RESUMO

As the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic continues to expand, healthcare resources globally have been spread thin. Now, the disease is rapidly spreading across South America, with deadly consequences in areas with already weakened public health systems. The Amazon region is particularly susceptible to the widespread devastation from Coronavirus disease 2019 (COVID-19) because of its immunologically fragile native Amerindian inhabitants and epidemiologic vulnerabilities. Herein, we discuss the current situation and potential impact of COVID-19 in the Amazon region and how further spread of the epidemic wave could prove devastating for many Amerindian people living in the Amazon rainforest.


Assuntos
Infecções por Coronavirus/etnologia , Indígenas Sul-Americanos , Pneumonia Viral/etnologia , Betacoronavirus , COVID-19 , Infecções por Coronavirus/mortalidade , Humanos , Pandemias , Pneumonia Viral/mortalidade , Floresta Úmida , SARS-CoV-2 , América do Sul/epidemiologia
10.
Vaccine ; 38(16): 3261-3270, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32171575

RESUMO

BACKGROUND: Currently, there are no solutions to prevent congenital transmission of Chagas disease during pregnancy, which affects 1-40% of pregnant women in Latin America and is associated with a 5% transmission risk. With therapeutic vaccines under development, now is the right time to determine the economic value of such a vaccine to prevent congenital transmission. METHODS: We developed a computational decision model that represented the clinical outcomes and diagnostic testing strategies for an infant born to a Chagas-positive woman in Mexico and evaluated the impact of vaccination. RESULTS: Compared to no vaccination, a 25% efficacious vaccine averted 125 [95% uncertainty interval (UI): 122-128] congenital cases, 1.9 (95% UI: 1.6-2.2) infant deaths, and 78 (95% UI: 66-91) DALYs per 10,000 infected pregnant women; a 50% efficacious vaccine averted 251 (95% UI: 248-254) cases, 3.8 (95% UI: 3.6-4.2) deaths, and 160 (95% UI: 148-171) DALYs; and a 75% efficacious vaccine averted 376 (95% UI: 374-378) cases, 5.8 (95% UI: 5.5-6.1) deaths, and 238 (95% UI: 227-249) DALYs. A 25% efficacious vaccine was cost-effective (incremental cost-effectiveness ratio <3× Mexico's gross domestic product per capita, <$29,698/DALY averted) when the vaccine cost ≤$240 and ≤$310 and cost-saving when ≤$10 and ≤$80 from the third-party payer and societal perspectives, respectively. A 50% efficacious vaccine was cost-effective when costing ≤$490 and ≤$615 and cost-saving when ≤$25 and ≤$160, from the third-party payer and societal perspectives, respectively. A 75% efficacious vaccine was cost-effective when ≤$720 and ≤$930 and cost-saving when ≤$40 and ≤$250 from the third-party payer and societal perspectives, respectively. Additionally, 13-42 fewer infants progressed to chronic disease, saving $0.41-$1.21 million to society. CONCLUSION: We delineated the thresholds at which therapeutic vaccination of Chagas-positive pregnant women would be cost-effective and cost-saving, providing economic guidance for decision-makers to consider when developing and bringing such a vaccine to market.


Assuntos
Doença de Chagas , Vacinas , Doença de Chagas/prevenção & controle , Análise Custo-Benefício , Feminino , Humanos , Lactente , América Latina , México , Gravidez , Gestantes , Vacinação
11.
Am J Trop Med Hyg ; 101(3): 482-483, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31264558

RESUMO

Chagas disease remains a major impediment to sustainable socioeconomic development in Latin America. Transplacental transmission explains the persistence of transmission in urban areas, in non-endemic regions, and in areas with an established interrupted vectorial transmission. One of every five cases of congenital Chagas disease in the world occurs in Colombia and Venezuela. The massive migration of impoverished populations from neighboring Venezuela has worsened the situation creating a humanitarian crisis in Northeastern Colombia, including the Sierra Nevada de Santa Marta. The prevalence of Chagas infection among pregnant women in these areas is higher than the national average, and the public health resources are insufficient. This perspective discusses the associated increased morbidity and mortality of congenital Chagas in this region, where stigmatization contributes to the impression among health authorities and the general population that it affects indigenous communities only. The monitoring and control of congenital Chagas disease in the Sierra Nevada of Santa Marta is a public health necessity that demands urgent and effective interventions.


Assuntos
Doença de Chagas/congênito , Doença de Chagas/epidemiologia , Transmissão Vertical de Doenças Infecciosas/estatística & dados numéricos , Doença de Chagas/mortalidade , Colômbia/epidemiologia , Feminino , Humanos , Gravidez , Saúde Pública , Trypanosoma cruzi
12.
Lancet Infect Dis ; 19(5): e149-e161, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799251

RESUMO

In the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Epidemias , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/transmissão , Animais , Controle de Doenças Transmissíveis , Doenças Transmissíveis Emergentes/prevenção & controle , Epidemias/prevenção & controle , Epidemias/estatística & dados numéricos , Geografia Médica , Humanos , Incidência , Doenças Transmitidas por Vetores/prevenção & controle , Venezuela/epidemiologia
13.
Emerg Infect Dis ; 25(4): 625-632, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30698523

RESUMO

Venezuela's tumbling economy and authoritarian rule have precipitated an unprecedented humanitarian crisis. Hyperinflation rates now exceed 45,000%, and Venezuela's health system is in free fall. The country is experiencing a massive exodus of biomedical scientists and qualified healthcare professionals. Reemergence of arthropod-borne and vaccine-preventable diseases has sparked serious epidemics that also affect neighboring countries. In this article, we discuss the ongoing epidemics of measles and diphtheria in Venezuela and their disproportionate impact on indigenous populations. We also discuss the potential for reemergence of poliomyelitis and conclude that action to halt the spread of vaccine-preventable diseases within Venezuela is a matter of urgency for the country and the region. We further provide specific recommendations for addressing this crisis.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Preveníveis por Vacina/epidemiologia , América/epidemiologia , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/etiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Atenção à Saúde , Geografia Médica , Humanos , Imunização , Vigilância em Saúde Pública , Vacinação , Doenças Preveníveis por Vacina/diagnóstico , Doenças Preveníveis por Vacina/etiologia , Doenças Preveníveis por Vacina/prevenção & controle , Vacinas/imunologia , Venezuela/epidemiologia
14.
J Infect Dis ; 220(6): 920-931, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544164

RESUMO

BACKGROUND: While the 2015-2016 Zika epidemics prompted accelerated vaccine development, decision makers need to know the potential economic value of vaccination strategies. METHODS: We developed models of Honduras, Brazil, and Puerto Rico, simulated targeting different populations for Zika vaccination (women of childbearing age, school-aged children, young adults, and everyone) and then introduced various Zika outbreaks. Sensitivity analyses varied vaccine characteristics. RESULTS: With a 2% attack rate ($5 vaccination), compared to no vaccination, vaccinating women of childbearing age cost $314-$1664 per case averted ($790-$4221/disability-adjusted life-year [DALY] averted) in Honduras, and saved $847-$1644/case averted in Brazil, and $3648-$4177/case averted in Puerto Rico, varying with vaccination coverage and efficacy (societal perspective). Vaccinating school-aged children cost $718-$1849/case averted (≤$5002/DALY averted) in Honduras, saved $819-$1609/case averted in Brazil, and saved $3823-$4360/case averted in Puerto Rico. Vaccinating young adults cost $310-$1666/case averted ($731-$4017/DALY averted) in Honduras, saved $953-$1703/case averted in Brazil, and saved $3857-$4372/case averted in Puerto Rico. Vaccinating everyone averted more cases but cost more, decreasing cost savings per case averted. Vaccination resulted in more cost savings and better outcomes at higher attack rates. CONCLUSIONS: When considering transmission, while vaccinating everyone naturally averted the most cases, specifically targeting women of childbearing age or young adults was the most cost-effective.


Assuntos
Análise Custo-Benefício , Modelos Econômicos , Vacinação/economia , Vacinação/métodos , Infecção por Zika virus/prevenção & controle , Adolescente , Adulto , Brasil , Criança , Surtos de Doenças , Feminino , Custos de Cuidados de Saúde , Política de Saúde , Honduras , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Porto Rico , Vacinação/normas , Vacinação/estatística & dados numéricos , Vacinas/economia , Adulto Jovem , Zika virus/imunologia , Infecção por Zika virus/epidemiologia
15.
Front Immunol ; 9: 2535, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473693

RESUMO

Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.


Assuntos
Ascaris suum/imunologia , Imunoglobulina G/imunologia , Substâncias Protetoras/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Ascaríase/imunologia , Ascaríase/parasitologia , Feminino , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Imunização/métodos , Interleucina-10/imunologia , Larva/imunologia , Pulmão/imunologia , Pulmão/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Suínos/imunologia , Suínos/parasitologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/parasitologia , Vacinação/métodos , Vacinas/imunologia
16.
Front Immunol, v. 9, 2535, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2606

RESUMO

Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.

19.
Vaccine ; 34(19): 2197-206, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27002501

RESUMO

BACKGROUND: Although mass drug administration (MDA) has helped reduce morbidity attributed to soil-transmitted helminth infections in children, its limitations for hookworm infection have motivated the development of a human hookworm vaccine to both improve morbidity control and ultimately help block hookworm transmission leading to elimination. However, the potential economic and epidemiologic impact of a preventive vaccine has not been fully evaluated. METHODS: We developed a dynamic compartment model coupled to a clinical and economics outcomes model representing both the human and hookworm populations in a high transmission region of Brazil. Experiments simulated different implementation scenarios of MDA and vaccination under varying circumstances. RESULTS: Considering only intervention costs, both annual MDA and vaccination were highly cost-effective (ICERs ≤ $790/DALY averted) compared to no intervention, with vaccination resulting in lower incremental cost-effectiveness ratios (ICERs ≤ $444/DALY averted). From the societal perspective, vaccination was economically dominant (i.e., less costly and more effective) versus annual MDA in all tested scenarios, except when vaccination was less efficacious (20% efficacy, 5 year duration) and MDA coverage was 75%. Increasing the vaccine's duration of protection and efficacy, and including a booster injection in adulthood all increased the benefits of vaccination (i.e., resulted in lower hookworm prevalence, averted more disability-adjusted life years, and saved more costs). Assuming its target product profile, a pediatric hookworm vaccine drastically decreased hookworm prevalence in children to 14.6% after 20 years, compared to 57.2% with no intervention and 54.1% with MDA. The addition of a booster in adulthood further reduced the overall prevalence from 68.0% to 36.0% and nearly eliminated hookworm infection in children. CONCLUSION: Using a human hookworm vaccine would be cost-effective and in many cases economically dominant, providing both health benefits and cost-savings. It could become a key technology in effecting control and elimination efforts for hookworm globally.


Assuntos
Infecções por Uncinaria/prevenção & controle , Vacinação em Massa/economia , Modelos Econômicos , Vacinas/uso terapêutico , Adolescente , Anti-Helmínticos/uso terapêutico , Brasil , Criança , Pré-Escolar , Análise Custo-Benefício , Infecções por Uncinaria/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Vacinas/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA