Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(13): 9372-9383, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110803

RESUMO

The chemical speciation of iron (Fe) in oceans is influenced by ambient pH, dissolved oxygen, and the concentrations and strengths of the binding sites of dissolved organic matter (DOM). Here, we derived new nonideal competitive adsorption (NICA) constants for Fe(III) binding to marine DOM via pH-Fe titrations. We used the constants to calculate Fe(III) speciation and derive the apparent Fe(III) solubility (SFe(III)app) in the ambient water column across the Peruvian shelf and slope region. We define SFe(III)app as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to DOM at a free Fe (Fe3+) concentration equal to the limiting solubility of Fe hydroxide (Fe(OH)3(s)). A ca. twofold increase in SFe(III)app in the oxygen minimum zone (OMZ) compared to surface waters is predicted. The increase results from a one order of magnitude decrease in H+ concentration which impacts both Fe(III) hydroxide solubility and organic complexation. A correlation matrix suggests that changes in pH have a larger impact on SFe(III)app and Fe(III) speciation than DOM in this region. Using Fe(II) measurements, we calculated ambient DFe(III) and compared the value with the predicted SFe(III)app. The underlying distribution of ambient DFe(III) largely reflected the predicted SFe(III)app, indicating that decreased pH as a result of OMZ intensification and ocean acidification may increase SFe(III)app with potential impacts on surface DFe inventories.


Assuntos
Ferro , Água do Mar , Concentração de Íons de Hidrogênio , Peru , Solubilidade
2.
Nat Commun ; 10(1): 5261, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748607

RESUMO

Marine phytoplankton growth at high latitudes is extensively limited by iron availability. Icebergs are a vector transporting the bioessential micronutrient iron into polar oceans. Therefore, increasing iceberg fluxes due to global warming have the potential to increase marine productivity and carbon export, creating a negative climate feedback. However, the magnitude of the iceberg iron flux, the subsequent fertilization effect and the resultant carbon export have not been quantified. Using a global analysis of iceberg samples, we reveal that iceberg iron concentrations vary over 6 orders of magnitude. Our results demonstrate that, whilst icebergs are the largest source of iron to the polar oceans, the heterogeneous iron distribution within ice moderates iron delivery to offshore waters and likely also affects the subsequent ocean iron enrichment. Future marine productivity may therefore be not only sensitive to increasing total iceberg fluxes, but also to changing iceberg properties, internal sediment distribution and melt dynamics.


Assuntos
Camada de Gelo/química , Ferro/análise , Regiões Antárticas , Regiões Árticas , Argentina , Carbono/metabolismo , Chile , Congelamento , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Aquecimento Global , Groenlândia , Islândia , Ferro/metabolismo , Oceanos e Mares , Fitoplâncton/metabolismo , Água do Mar/análise , Água do Mar/química , Svalbard
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA