RESUMO
Graphene oxide (GO) is one of the most well-known graphene derivatives which, due to its outstanding chemical, electrical and optical properties as well as its high oxygen content, has been recently applied in several fields such as in the construction of sensors, as antimicrobial agent for biomedical applications, as well as nanofiller material for membranes applied in wastewater treatment. In this last-mentioned field, the synthesis and functionalization of membranes with GO has proven to improve the performance of membranes applied in the treatment of wastewater containing dyes, regarding antifouling behavior, selectivity and flux. In this review, an overview of water pollution caused by effluents containing synthetic dyes, the advantages and limitations of GO-based membranes and the latest research advances on the use of GO-based membranes for dyes removal, including its impact on membrane performance, are discussed in detail. The future panorama of the applicability of GO-based membranes for the treatment of water contaminated by dyes is also provided.
Assuntos
Grafite , Purificação da Água , Corantes , Águas ResiduáriasRESUMO
A novel modification through pressurized filtration technique of commercial polyethersulfone membranes was proposed using a biopolymer extracted from Moringa oleifera Lam. (MO) along with graphene oxide (GO), in order to decrease fouling and improve the membrane selectivity for the removal of methylene blue dye. The effect of these agents over the morphology and performance of the membranes were studied through the evaluation of permeability, dye removal and fouling parameters. The characterization of the membrane indicates a significant decrease in pore size, as confirmed by the filtration experiments. Also, according to FTIR and SEM analysis the modification was effectively accomplished. All modified membranes presented low fouling rates (<10.55%) and high dye removal rates (from 2.85% to 96.73%). Furthermore, it is the first time that MO has been used as a natural polymer to improve and confer new characteristics on membranes, creating new possibilities for further study of this promising environment-friendly biopolymer in membrane separation processes.
Assuntos
Grafite , Moringa oleifera , Biopolímeros , FiltraçãoRESUMO
Many efforts have been made to minimize the polluting effect of wastewater containing dyes that are potentially toxic to the environment. The association of the coagulation/flocculation (CF) process, using saline extract of Moringa oleifera Lam (MO) seeds and subsequently ultrafiltration (UF) in TiO2-modified membranes was performed to remove reactive black 5 dye (10â¯ppm, RB5) from aqueous solution. The efficiency of the hybrid process was measured by the removal of the dye concentration, apparent color and fouling parameters. The membranes were successfully modified as supported by characterization methods of SEM, FTIR-ATR and WCA. The efficiency of the processes, when applied separately was low. However, after CF and subsequently the filtration in a TiO2-modified membrane both parameters assessed (dye concentration, apparent color) reached 100% of the removal rate. The modified membranes substantially improved permeate fluxes, for instance, after CF the dye flux for modified membrane enhanced around 49% compared with the flux in the pristine membrane. According to these results, the combination of methods was able to effectively remove RB5 dye, in addition to improving permeate fluxes and keeping fouling at low levels.