Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17426, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416668

RESUMO

Photocatalytic CO2 reduction is an alternative technology to the depletion of highly pollutant fossil fuels through the generation of renewable solar-based fuels. This technology requires that the photocatalysts be obtained directly from nature to scale up the process. Taking that into consideration, this work proposed the fabrication of sodium iron titanate (NaFeTiO4) photocatalysts from earth-abundant ilmenite mineral. The photocatalysts exhibited full spectrum light response, good electron transfer due to its unique tunnel structure that favored the formation of rod-like morphology. These properties promoted the solar-driven CO2 reduction to generate formic acid (HCOOH) with high selectivity (157 µmol g-1 h-1). It was found that higher synthesis temperatures promoted the formation of Fe3+ species, which decreased the efficiency for CO2 reduction. Also, the possibility of reduced the CO2 molecules in the air was studied with the NaFeTiO4 samples, which resulted in an efficiency of up to 93 µmol g-1 h-1 of HCOOH under visible light. The stability of the solar-driven CO2 reduction with the NaFeTiO4 photocatalysts was confirmed after seven days of continuous evaluation.

2.
Environ Sci Pollut Res Int ; 24(7): 6361-6371, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27475433

RESUMO

ZnO samples were prepared by sol-gel method applying a factorial design in order to improve the photocatalytic properties of the semiconductor oxide in the NO photooxidation reaction. The concentrations of zinc acetate and ammonium hydroxide were selected as critical variables in the synthesis of ZnO. Nine samples of ZnO were obtained as product of the factorial design and were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and N2 adsorption-desorption isotherms. The photocatalytic activity of ZnO samples was associated with the physical properties developed by each sample according to its respective conditions of synthesis. Some photocatalytic reaction parameters, such as mass of photocatalyst, irradiance, and relative humidity, were modified in order to evaluate its effect in the photocatalytic conversion of NO. As a relevant point, the relative humidity played an important role in the increase of the selectivity of the NO photooxidation reaction to innocuous nitrate ions when ZnO was used as photocatalyst.


Assuntos
Poluentes Ambientais/química , Óxido Nítrico/química , Processos Fotoquímicos , Óxido de Zinco/química , Óxido de Zinco/síntese química , Adsorção , Hidróxido de Amônia/química , Catálise , Poluentes Ambientais/isolamento & purificação , Óxido Nítrico/isolamento & purificação , Oxirredução , Acetato de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA