Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 789: 148008, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082200

RESUMO

Air pollution has been shown to impact multiple measures of neurodevelopment in young children. Its effects on particularly vulnerable populations, such as ethnic minorities, however, is less studied. To address this gap in the literature, we assess the associations between infant non-nutritive suck (NNS), an early indicator of central nervous system integrity, and air pollution exposures in Puerto Rico. Among infants aged 0-3 months enrolled in the Center for Research on Early Childhood Exposure and Development (CRECE) cohort from 2017 to 2019, we examined associations between exposure to fine particulate matter (PM2.5) and its components on infant NNS in Puerto Rico. NNS was assessed using a pacifier attached to a pressure transducer, allowing for real-time visualization of NNS amplitude, frequency, duration, cycles/burst, cycles/min and bursts/min. These data were linked to 9-month average prenatal concentrations of PM2.5 and components, measured at three community monitoring sites. We used linear regression to examine the PM2.5-NNS association in single pollutant models, controlling for infant sex, maternal age, gestational age, and season of birth in base and additionally for household smoke exposure, age at testing, and NNS duration in full models. Among 198 infants, the average NNS amplitude and burst duration was 17.1 cmH2O and 6.1 s, respectively. Decreased NNS amplitude was consistently and significantly associated with 9-month average exposure to sulfur (-1.026 ± 0.507), zinc (-1.091 ± 0.503), copper (-1.096 ± 0.535) vanadium (-1.157 ± 0.537), and nickel (-1.530 ± 0.501). Decrements in NNS frequency were associated with sulfur exposure (0.036 ± 0.018), but not other examined PM components. Our findings provide new evidence that prenatal maternal exposure to specific PM components are associated with impaired neurodevelopment in Puerto Rican infants soon after birth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Criança , Pré-Escolar , Feminino , Hispânico ou Latino , Humanos , Lactente , Chupetas , Material Particulado , Gravidez , Porto Rico
2.
Environ Int ; 152: 106480, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740674

RESUMO

BACKGROUND: Infant non-nutritive suck (NNS), or sucking on a pacifier with no nutrients being delivered, has been used as in index of brain function and has been linked to subsequent neurodevelopment. Yet, no data are available connecting NNS to environmental exposures in utero. The goal of this study was to examine the relationship between gestational exposure to phthalates (a group of chemicals found in personal care products, PVC plastics, and other products) and NNS among infants in a birth cohort study in Puerto Rico. METHODS: Urinary phthalate metabolite levels were measured in women at up to three time points in pregnancy as a measure of in utero exposure to the child. We calculated the geometric mean of each metabolite for each woman as a measure of exposure across gestation. Infants had their NNS sampled using our custom research pacifier between 4-6 (± 2 weeks) weeks of age, yielding the following NNS dependent measures: cycles/burst, frequency, amplitude, bursts/min, and cycles/min. RESULTS: Two hundred and eight mother-infant dyads completed this study We used multiple linear regression to assess associations between individual phthalate metabolites and NNS measurements, adjusting for infant sex, birthweight, and urinary specific gravity. An interquartile range (IQR) increase in mono carboxyisononyl phthalate across pregnancy was associated with 3.5% (95%CI: -6.2, -0.8%) lower NNS frequency and 8.9% (0.6, 17.3%) higher NNS amplitude. Similarly, an IQR increase in mono-2-ethylhexyl phthalate was also associated with 3.4% (-6.5, -0.2%) lower NNS frequency, while an IQR increase in di-2-ethylhexyl terephthalate metabolites was associated with 11.2% (2.9, 19.5%) higher NNS amplitude. Gestational exposure to phthalates may alter NNS amplitude and frequency in full-term infants. These findings indicate that the infants may be increasing their NNS amplitude to compensate for their slower NNS frequency. These preliminary findings could have important clinical implications for earlier detection of exposure-related deficits in neurofunction as well as implications for subsequent neurodevelopment and related interventions.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Criança , Estudos de Coortes , Exposição Ambiental , Feminino , Humanos , Lactente , Chupetas , Gravidez , Porto Rico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA