Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 194, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849775

RESUMO

Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.


Assuntos
Ascomicetos , Bacillus , Genoma Bacteriano , Glycine max , Doenças das Plantas , Animais , Bacillus/genética , Glycine max/microbiologia , Glycine max/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Genoma Bacteriano/genética , Ascomicetos/genética , Rhizoctonia/genética , Controle Biológico de Vetores , Agentes de Controle Biológico , Sequenciamento Completo do Genoma , Tylenchoidea , Filogenia , Antibiose , Brasil
2.
Semina ciênc. agrar ; 44(3): 1077-1096, 2023. ilus, graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1512238

RESUMO

The in vitro antagonistic activity of Bacillus velezensis LABIM40 (strain CMRP 4489) was assessed against Alternaria linariae, Botryotinia squamosa, Colletotrichum lindemuthianum, Gibberella zeae, and Rhizoctonia solani. An experiment was conducted using treated seeds under growth chamber conditions to determine the impact of various LABIM40 formulations on tomato seedling growth and the biocontrol of damping-off caused by R. solani. The treatments included the use of LABIM40 cell suspension, LABIM40 cell-free supernatant (CFS), 10 times concentrated CFS (10× CFS), commercial products based on Bacillus amyloliquefaciens (CP_1) and Bacillus subtilis (CP_2), and water. The effects of these products were assessed on tomato seedlings grown in sterile substrate or substrate inoculated with R. solani. In a dual culture test, B. velezensis LABIM40 inhibited the mycelial growth of the aforementioned fungal pathogens by 46.6%, 67.4%, 64.7%, 49.0%, and 54.4%, respectively. The minimum inhibitory concentration against each fungus was determined using varying concentrations of CFS in potato dextrose agar medium, followed by a regression analysis of mycelial growth inhibition. Except for A. linariae, the logarithmic model provided the best fit in all cases. Tomato seedlings from seeds treated with 10× CFS in inoculated substrate exhibited a survival rate 57% higher than that exhibited by the control treatment. However, no growth promotion was observed in tomato plants from seeds treated with LABIM40 cells or its CFS metabolites. In summary, these findings highlight the antagonistic activity of B. velezensis LABIM40 against A. linariae, B. squamosa, C. lindemuthianum, G. zeae, and R. solani, as demonstrated by dual culture and CFS diffusion tests. This suggests its potential as a biocontrol agent for damping-off in tomatoes.(AU)


O antagonismo do Bacillus velezensis LABIM40 (cepa CMRP 4489) foi avaliado in vitro contra Alternaria linariae, Botryotinia squamosa, Colletotrichum lindemuthianum, Gibberella zeae e Rhizoctonia solani. Com o objetivo de avaliar o efeito de diferentes formulações de LABIM40 no crescimento de mudas de tomateiro e no biocontrole do tombamento causado por R. solani, foi conduzido um experimento com sementes tratadas em condições de câmara de crescimento. Os tratamentos foram suspensão de células de LABIM40, LABIM40 SLC, SLC 10 vezes concentrado (10xSLC), produtos comerciais à base de Bacillus amyloliquefaciens (PC_1) e Bacillus subtilis (PC_2) e água. Os efeitos do produto foram avaliados em mudas de tomate cultivadas em substrato estéril e em substrato inoculado com R. solani. No teste de cultura dupla, B. velezensis LABIM40 inibiu em 46,6, 67,4, 64,7, 49,0 e 54,4% o crescimento micelial desses fungos fitopatogênicos, respectivamente. A concentração inibitória mínima para cada fungo foi determinada por diferentes concentrações de sobrenadante livre de células (SLC) em meio de batata dextrose ágar (PDA), seguido de análise de regressão da inibição do crescimento micelial. Com exceção de A. linariae, em todos os casos o modelo com melhor ajuste foi o logarítmico. A sobrevivência de mudas de tomate de sementes tratadas com 10xSLC em substrato inoculado foi 57% maior do que o tratamento controle. Não foi observada promoção de crescimento em plantas de tomate oriundas de sementes tratadas com células de LABIM40 ou metabólitos de seu SLC. Coletivamente, esses resultados destacam a atividade antagonista de B. velezensis LABIM40 contra A. linariae, B. squamosa, C. lindemuthianum, G. zeae e R. solani verificada por cultura dupla e testes de difusão de sobrenadante livre de células e seu potencial como agente de biocontrole do tombamento do tomateiro.(AU)


Assuntos
Infecções Bacterianas/prevenção & controle , Solanum lycopersicum/microbiologia , Bactérias Aeróbias , Técnicas In Vitro , Controle Biológico de Vetores
3.
Sci Rep ; 12(1): 15284, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088482

RESUMO

Soybean and maize are some of the main drivers of Brazilian agribusiness. However, biotic and abiotic factors are of great concern, causing huge grain yield and quality losses. Phosphorus (P) deficiency is important among the abiotic factors because most Brazilian soils have a highly P-fixing nature. Thus, large amounts of phosphate fertilizers are regularly applied to overcome the rapid precipitation of P. Searching for alternatives to improve the use of P by crops is essential to reduce the demand for P input. The use of multifunctional rhizobacteria can be considered one of these alternatives. In this sense, the objective of the present work was to select and validate bacterial strains with triple action (plant growth promoter, phosphate solubilizer, and biocontrol agent) in maize and soybean, aiming to develop a multifunctional microbial inoculant for Brazilian agriculture. Bacterial strains with high indole acetic acid (IAA) production, phosphate solubilization, and antifungal activity against soil pathogenic fungi (Rhizoctonia solani, Macrophomina phaseolina, and Fusarium solani) were selected from the maize rhizosphere. Then, they were evaluated as growth promoters in maize under greenhouse conditions. Based on this study, strain 03 (Ag75) was selected due to its high potential for increasing biomass (root and shoot) and shoot P content in maize. This strain was identified through genomic sequencing as Bacillus velezensis. In field experiments, the inoculation of this bacterium increased maize and soybean yields by 17.8 and 26.5%, respectively, compared to the control (25 kg P2O5). In addition, the inoculation results did not differ from the control with 84 kg P2O5, indicating that it is possible to reduce the application of phosphate in these crops. Thus, the Ag75 strain has great potential for developing a multifunctional microbial inoculant that combines the ability to solubilize phosphate, promote plant growth, and be a biocontrol agent for several phytopathogenic fungi.


Assuntos
Inoculantes Agrícolas , Bacillus , Bacillus/genética , Bactérias/genética , Produtos Agrícolas , Fosfatos , Glycine max , Zea mays
4.
Microorganisms ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889120

RESUMO

Increasing phosphorus (P) use efficiency in agricultural systems is urgent and essential to significantly reduce the global demand for this nutrient. Applying phosphate-solubilizing and plant growth-promoting bacteria in the rhizosphere represents a strategy worthy of attention. In this context, the present work aimed to select and validate bacterial strains capable of solubilizing phosphorous and promoting maize growth, aiming to develop a microbial inoculant to be used in Brazilian agriculture. Bacterial strains from the maize rhizosphere were evaluated based on their ability to solubilize phosphate and produce indole acetic acid. Based on these characteristics, 24 strains were selected to be further evaluated under laboratory, greenhouse, and field conditions. Among the selected strains, four (I04, I12, I13, and I17) showed a high potential to increase maize root growth and shoot P content. Strains I13 (Ag87) and I17 (Ag94) were identified by genomic sequencing as Bacillus megaterium and Lysinibacillus sp., respectively. These strains presented superior yield increments relative to the control treatment with 30% P. In addition, combining Ag87 and Ag94 resulted in even higher yield gains, indicating a synergistic effect that could be harnessed in a commercial inoculant for Brazilian agriculture.

5.
Front Microbiol ; 11: 618415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519779

RESUMO

The main objective of this study was to evaluate Bacillus velezensis strain CMRP 4490 regarding its ability to inhibit soil-borne plant pathogens and to increase plant growth. The study included evaluation of in vitro antifungal control, sequencing the bacterial genome, mining genes responsible for the synthesis of secondary metabolites, root colonization ability, and greenhouse studies for the assessment of plant growth-promoting ability. The strain was obtained from soil samples in the north of Paraná in Brazil and was classified as a B. velezensis, which is considered a promising biological control agent. In vitro assay showed that B. velezensis CMRP 4490 presented antagonistic activity against Sclerotinia sclerotiorum, Macrophomina phaseolina, Botrytis cinerea, and Rhizoctonia solani with a mycelial growth inhibition of approximately 60%, without any significant difference among them. To well understand this strain and to validate its effect on growth-promoting rhizobacteria, it was decided to explore its genetic content through genome sequencing, in vitro, and greenhouse studies. The genome of CMRP 4490 was estimated at 3,996,396 bp with a GC content of 46.4% and presents 4,042 coding DNA sequences. Biosynthetic gene clusters related to the synthesis of molecules with antifungal activity were found in the genome. Genes linked to the regulation/formation of biofilms, motility, and important properties for rhizospheric colonization were also found in the genome. Application of CMRP 4490 as a coating film on soybean increased from 55.5 to 64% on germination rates when compared to the control; no differences were observed among treatments for the maize germination. The results indicated that B. velezensis CMRP 4490 could be a potential biocontrol agent with plant growth-promoting ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA