Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 69(8): 2498-2505, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31204968

RESUMO

A polyphasic approach was used for evaluating the taxonomic status of strain HST21T isolated from Salar de Huasco in the Atacama Desert. The results of 16S rRNA gene and multilocus sequence phylogenetic analyses assigned strain HST21T to the genus Streptomyceswith Streptomyces albidochromogenes DSM 41800Tand Streptomyces flavidovirens DSM 40150T as its nearest neighbours. Digital DNA-DNA hydridization (dDDH) and average nucleotide identity (ANI) values between the genome sequences of strain HST21T and S. albidochromogenes DSM 41800T (35.6 and 88.2 %) and S. flavidovirens DSM 40105T (47.2 and 88.8 %) were below the thresholds of 70  and 95-96 % for prokaryotic conspecific assignation. Phenotypic, chemotaxonomic and genetic results distinguished strain HST21T from its closest neighbours. Strain HST21T is characterized by the presence of ll-diaminopimelic acid in its peptidoglycan layer; glucose and ribose as whole cell sugars; diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, glycophospholipids, unknown lipids and phospholipids as polar lipids; and anteiso-C15 : 0 (21.6 %) and anteiso-C17 : 0 (20.5 %) as major fatty acids (>15 %). Based on these results, strain HST21T merits recognition as a novel species, for which the name Streptomyces altiplanensis sp. nov. is proposed. The type strain is HST21T=DSM 107267T=CECT 9647T. While analysing the phylogenies of strain HST21T, Streptomyces chryseus DSM 40420T and Streptomyces helvaticus DSM 40431T were found to have 100 % 16S rRNA gene sequence similarity with digital DNA-DNA hydridization (dDDH) and average nucleotide identity (ANI) values of 95.3 and 99.4 %, respectively. Therefore, S. helvaticus is considered as a later heterotypic synonym of S. chryseus and, consequently, we emend the description of S. chryseus.


Assuntos
Clima Desértico , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Álcalis , Altitude , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação
2.
Front Microbiol ; 6: 1465, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733994

RESUMO

Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA