Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943914

RESUMO

Liver fibrosis is a complex process characterized by the excessive accumulation of extracellular matrix (ECM) and an alteration in liver architecture, as a result of most types of chronic liver diseases such as cirrhosis, hepatocellular carcinoma (HCC) and liver failure. Maresin-1 (MaR1) is derivative of ω-3 docosahexaenoic acid (DHA), which has been shown to have pro-resolutive and anti-inflammatory effects. We tested the hypothesis that the application of MaR1 could prevent the development of fibrosis in an animal model of chronic hepatic damage. Sprague-Dawley rats were induced with liver fibrosis by injections of diethylnitrosamine (DEN) and treated with or without MaR1 for four weeks. In the MaR1-treated animals, levels of AST and ALT were normalized in comparison with DEN alone, the hepatic architecture was improved, and inflammation and necrotic areas were reduced. Cell proliferation, assessed by the mitotic activity index and the expression of Ki-67, was increased in the MaR1-treated group. MaR1 attenuated liver fibrosis and oxidative stress was induced by DEN. Plasma levels of the pro-inflammatory mediators TNF-α and IL-1ß were reduced in MaR1-treated animals, whereas the levels of IL-10, an anti-inflammatory cytokine, increased. Interestingly, MaR1 inhibited the translocation of the p65 subunit of NF-κB, while increasing the activation of Nrf2, a key regulator of the antioxidant response. Finally, MaR1 treatment reduced the levels of the pro-fibrotic mediator TGF-ß and its receptor, while normalizing the hepatic levels of IGF-1, a proliferative agent. Taken together, these results suggest that MaR1 improves the parameters of DEN-induced liver fibrosis, activating hepatocyte proliferation and decreasing oxidative stress and inflammation. These results open the possibility of MaR1 as a potential therapeutic agent in fibrosis and other liver pathologies.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/sangue , Dietilnitrosamina , Ácidos Docosa-Hexaenoicos/administração & dosagem , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Inflamação/sangue , Inflamação/complicações , Mediadores da Inflamação/sangue , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Masculino , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
Nutrients ; 13(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34684386

RESUMO

In recent years, the beneficial effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake on human health has been widely accepted in the field of immunonutrition. Today, we find a diversity of supplements based on n-3 PUFAs and/or minerals, vitamins and other substances. The main objective of this review is to discuss the importance of n-3 PUFAs and their derivatives on immunity and inflammatory status related to liver disease and other non-communicable illnesses. Based on the burden of liver diseases in 2019, more than two million people die from liver pathologies per year worldwide, because it is the organ most exposed to agents such as viruses, toxins and medications. Consequently, research conducted on n-3 PUFAs for liver disease has been gaining prominence with encouraging results, given that these fatty acids have anti-inflammatory and cytoprotective effects. In addition, it has been described that n-3 PUFAs are converted into a novel species of lipid intermediaries, specialized pro-resolving mediators (SPMs). At specific levels, SPMs improve the termination of inflammation as well as the repairing and regeneration of tissues, but they are deregulated in liver disease. Since evidence is still insufficient to carry out pharmacological trials to benefit the resolution of acute inflammation in non-communicable diseases, there remains a call for continuing preclinical and clinical research to better understand SPM actions and outcomes.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Sistema Imunitário/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Doenças não Transmissíveis , Fenômenos Fisiológicos da Nutrição , Animais , Humanos , Estado Nutricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA