Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082155

RESUMO

Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g-1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.


Assuntos
Adaptação Fisiológica/genética , Poaceae/genética , Dessecação/métodos , Genômica/métodos , Folhas de Planta/genética , Proteínas de Plantas/genética , Água/metabolismo
2.
Plant J ; 43(4): 506-19, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16098105

RESUMO

Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugars and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. Using conserved modular arrangement 5 (CMA5), a previously characterized minimal light-responsive unit, we show that in Arabidopsis thaliana this unit responds not only positively to light signals, but also negatively to sugars and ABA. The latter responses were found to be impaired in the abi4 mutant, indicating that ABSCISIC ACID INSENSITIVE-4 (ABI4) is a regulator involved in sugar and ABA repression of this minimal regulatory unit. Furthermore, we report a new sequence element conserved in several rbcS promoters, herewith named S-box, which is important for the sugar and ABA responsiveness of CMA5. This sequence corresponds to a putative ABI4-binding site, which is in fact bound by the Arabidopsis ABI4 protein in vitro. The S-box is closely associated with the G-box present in CMA5, and this association is conserved in the promoters of several RBCS genes. This phylogenetically conserved promoter feature probably reflects a common regulatory mechanism and identifies a point of convergence between light- and sugar-signaling pathways.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Carboidratos/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Luz , Dados de Sequência Molecular , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA