RESUMO
Land modification causes biodiversity loss and ecosystem modification. Despite many studies on the impacts of this factor, there is little empirical evidence on how it affects the interaction networks of plants, herbivores and their natural enemies; likewise, there is little evidence on how those networks change due to differences in the complexity of the communities they comprise. We analyzed the effects of land use and number of trophic levels on the interaction networks of exotic legume species and their associated arthropods. We collected seedpods from five exotic legume species (one of them invasive) in four land use types (urbanization, roadside, L. leucocephala plantation, wooded pasture) on Santa Cruz Island in the Galapagos, and obtained all arthropods that emerged from the seeds. Then, we built and analyzed the interaction networks for each land use at two community scales, each with different numbers of trophic levels: (1) three levels: plant-seed beetle-parasitoid (PSP), and (2) more than three levels: plant-seed beetle-parasitoid-predator and other trophic guilds (PSPP). Land use was more relevant than number of trophic levels in the configuration of species interactions. The number of species and interactions was highest on roadsides at PSPP and lowest in plantations at PSP. We found a significant effect of land use on connectance and interaction evenness (IE), and no significant effect of number of trophic levels on connectance, diversity or IE. The simultaneous analysis of land use and number of trophic levels enabled the identification of more complex patterns of community structure. Comparison of the patterns we found among islands and between exotic and native legumes is recommended. Understanding the structure of the communities analyzed here, as well as the relative contribution of their determinants of change, would allow us to develop conservation plans according to the dynamics of these neo-ecosystems.
Assuntos
Artrópodes , Ecossistema , Animais , Biodiversidade , Plantas , HerbivoriaRESUMO
The historical and geographical properties of the archipelagos allow a detailed study of species diversification, and phenotypic traits can indicate the extent of such processes. Eupelmus pulchriceps (Cameron, 1904) is an exotic species to the Galapagos archipelago, and generalist parasitoid that attacks a beetle species that consumes the seeds of the invasive shrub Leucaena leucocephala (Lam.) de Wit. Despite extensive sampling, the wasp is recorded only in Santa Cruz and San Cristobal islands of the Galapagos archipelago. Thus, using 112 female wasps, we compare body size, proportion, and allometric differentiations within and between the two islands. There were no body size differences between islands. A PerMANOVA indicates differences between the islands and a single differentiation between two localities of one island. Allometric differences between islands were not the same for all structures. These results are consistent with the greater distance between islands than between localities and suggest a differentiation process. The variables with allometric differentiation are associated with wings and ovipositor, possibly responding to different ecological pressures. It is interesting that this parasitoid, recently arrived at the archipelago, is already showing differentiation. Also, it is essential to monitor the behavior of these wasps in the archipelago, given their potential to access other species affecting the trophic interactions of the local biota.
Assuntos
Fabaceae , Parasitos , Vespas , Animais , Biota , Geografia , EquadorRESUMO
Abstract In the present work we report the first occurrence of the entomogenous fungus Hirsutella saussurei, in the Galápagos Islands, and also the first evidence of this fungus parasitizing a new host: the invasive paper wasp Polistes versicolor. Some wasps parasitized by the fungus were found in Santa Cruz island in 2018 and 2019, while two new specimens were found in Floreana in 2019. Our data enlarge both the geographical distribution of the fungus and the host range. Even though P. versicolor is considered an important threat for the Galapagos endemic fauna, it is necessary a deep research to know if H. saussurei could be included under control programs of this invasive wasp.
RESUMO
The thelastomatoid pinworm fauna (Nematoda: Oxyurida: Thelastomatoidea) was surveyed in 3 endemic species and 6 introduced species of cockroach hosts (Insecta: Blattaria) in the Galápagos Islands, Ecuador. A total of 658 host specimens were examined from preserved collections that had been collected between 1966 and 2003 from 7 islands in the archipelago. Eight species of pinworms were identified from these cockroach hosts, including the dominant species Cephalobellus ovumglutinosus and a Severianoia sp. as well as Leidynema appendiculata, Hammerschmidtiella diesingi, an unidentified Cephalobellus species resembling Cephalobellus magalhaesi, an unidentified Protrellus species closely resembling Protrellus shamimi, and an undescribed Blattophila sp. Five new host records are identified for C. ovumglutinosus including the endemic Galápagos cockroaches Chorisoneura carpenteri, Ischnoptera snodgrassii, and Ischnoptera santacruzensis. These endemics were also infected with an undescribed Blatticola sp. Other species recorded resemble known pinworms from other hosts around the world. Prevalence between islands and between host species was variable, but total prevalence for individual pinworm species was consistently low (<10%). A single host specimen examined was infected with more than 1 pinworm species; otherwise only a single species was observed in each infected host. At least 1 introduced pinworm species carried to the islands via invasive cockroach hosts was present in endemic host species, but several globally widespread introduced pinworm species were absent from endemic cockroaches. Santa Cruz was inhabited by the greatest number of pinworm species, likely due to a higher rate of invasive host introduction. This survey, the first from this region, showed that the distribution and transmission of pinworms in the Galápagos Islands is complex and may provide future models of invertebrate dispersal and speciation in an ecosystem already rich with examples of evolution.
Assuntos
Baratas/parasitologia , Oxyurida/classificação , Animais , Evolução Biológica , Equador , Feminino , Espécies Introduzidas , Masculino , Oxyurida/anatomia & histologia , Oxyurida/isolamento & purificaçãoRESUMO
The unique biodiversity of most oceanic archipelagos is currently threatened by the introduction of alien species that can displace native biota, disrupt native ecological interactions, and profoundly affect community structure and stability. We investigated the threat of aliens on pollination networks in the species-rich lowlands of five Galápagos Islands. Twenty per cent of all species (60 plants and 220 pollinators) in the pooled network were aliens, being involved in 38 per cent of the interactions. Most aliens were insects, especially dipterans (36%), hymenopterans (30%) and lepidopterans (14%). These alien insects had more links than either endemic pollinators or non-endemic natives, some even acting as island hubs. Aliens linked mostly to generalized species, increasing nestedness and thus network stability. Moreover, they infiltrated all seven connected modules (determined by geographical and phylogenetic constraints) of the overall network, representing around 30 per cent of species in two of them. An astonishingly high proportion (38%) of connectors, which enhance network cohesiveness, was also alien. Results indicate that the structure of these emergent novel communities might become more resistant to certain type of disturbances (e.g. species loss), while being more vulnerable to others (e.g. spread of a disease). Such notable changes in network structure as invasions progress are expected to have important consequences for native biodiversity maintenance.